Molecular Imaging and Biology

, Volume 18, Issue 6, pp 924–934 | Cite as

Utility of [18F]FSPG PET to Image Hepatocellular Carcinoma: First Clinical Evaluation in a US Population

  • Gina Kavanaugh
  • Jason Williams
  • Andrew Scott Morris
  • Michael L. Nickels
  • Ronald Walker
  • Norman Koglin
  • Andrew W. Stephens
  • M. Kay Washington
  • Sunil K. Geevarghese
  • Qi Liu
  • Dan Ayers
  • Yu Shyr
  • H. Charles Manning
Research Article

Abstract

Purpose

Non-invasive imaging is central to hepatocellular carcinoma (HCC) diagnosis; however, conventional modalities are limited by smaller tumors and other chronic diseases that are often present in patients with HCC, such as cirrhosis. This pilot study evaluated the feasibility of (4S)-4-(3-[18F]fluoropropyl)-L-glutamic acid ([18F]FSPG) positron emission tomography (PET)/X-ray computed tomography (CT) to image HCC. [18F]FSPG PET/CT was compared to standard-of-care (SOC) magnetic resonance imaging (MRI) and CT, and [11C]acetate PET/CT, commonly used in this setting. We report the largest cohort of HCC patients imaged to date with [18F]FSPG PET/CT and present the first comparison to [11C]acetate PET/CT and SOC imaging. This study represents the first in a US HCC population, which is distinguished by different underlying comorbidities than non-US populations.

Procedures

xC− transporter RNA and protein levels were evaluated in HCC and matched liver samples from The Cancer Genome Atlas (n = 16) and a tissue microarray (n = 83). Eleven HCC patients who underwent prior MRI or CT scans were imaged by [18F]FSPG PET/CT, with seven patients also imaged with [11C]acetate PET/CT.

Results

xC− transporter RNA and protein levels were elevated in HCC samples compared to background liver. Over 50 % of low-grade HCCs and ~70 % of high-grade tumors exceeded background liver protein expression. [18F]FSPG PET/CT demonstrated a detection rate of 75 %. [18F]FSPG PET/CT also identified an HCC devoid of typical MRI enhancement pattern. Patients scanned with [18F]FSPG and [11C]acetate PET/CT exhibited a 90 and 70 % detection rate, respectively. In dually positive tumors, [18F]FSPG accumulation consistently resulted in significantly greater tumor-to-liver background ratios compared with [11C]acetate PET/CT.

Conclusions

[18F]FSPG PET/CT is a promising modality for HCC imaging, and larger studies are warranted to examine [18F]FSPG PET/CT impact on diagnosis and management of HCC. [18F]FSPG PET/CT may also be useful for phenotyping HCC tumor metabolism as part of precision cancer medicine.

Key Words

PET FSPG HCC Cancer imaging 

References

  1. 1.
    Ferlay J, Shin HR, Bray F et al (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International journal of cancer Journal international du cancer 127:2893–2917CrossRefPubMedGoogle Scholar
  2. 2.
    (2016) Cancer Facts & Figures. In Atlanta: America Cancer Society. American Cancer SocietyGoogle Scholar
  3. 3.
    El-Serag HB (2011) Hepatocellular carcinoma. New Engl J Med 365:1118–1127CrossRefPubMedGoogle Scholar
  4. 4.
    Mazzaferro V, Regalia E, Doci R et al (1996) Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. New Engl J Med 334:693–699CrossRefPubMedGoogle Scholar
  5. 5.
    Llovet JM, Schwartz M, Mazzaferro V (2005) Resection and liver transplantation for hepatocellular carcinoma. Semin Liver Dis 25:181–200CrossRefPubMedGoogle Scholar
  6. 6.
    Sangiovanni A, Manini MA, Iavarone M et al (2010) The diagnostic and economic impact of contrast imaging techniques in the diagnosis of small hepatocellular carcinoma in cirrhosis. Gut 59:638–644CrossRefPubMedGoogle Scholar
  7. 7.
    Yu NC, Chaudhari V, Raman SS, et al. (2011) CT and MRI improve detection of hepatocellular carcinoma, compared with ultrasound alone, in patients with cirrhosis Clin Gastroenterol Hepatol 9:161–167.Google Scholar
  8. 8.
    Cheung TT, Ho CL, Lo CM et al (2013) 11C-acetate and 18F-FDG PET/CT for clinical staging and selection of patients with hepatocellular carcinoma for liver transplantation on the basis of Milan criteria: surgeon's perspective. J Nucl Med 54:192–200CrossRefPubMedGoogle Scholar
  9. 9.
    Jadvar H (2012) Hepatocellular carcinoma and gastroenteropancreatic neuroendocrine tumors: potential role of other positron emission tomography radiotracers. Semin Nucl Med 42:247–254CrossRefPubMedGoogle Scholar
  10. 10.
    Grassi I, Nanni C, Allegri V et al (2012) The clinical use of PET with (11)C-acetate. Am J Nucl Med Mol imaging 2:33–47PubMedGoogle Scholar
  11. 11.
    Baek S, Mueller A, Lim YS et al (2013) 4S)-4-(3-18F-fluoropropyl)-L-glutamate for imaging of xC transporter activity in hepatocellular carcinoma using PET: preclinical and exploratory clinical studies. J Nucl Med 54:117–123CrossRefPubMedGoogle Scholar
  12. 12.
    Ho CL, Cheung MK, Chen S et al (2012) [18F]fluoroacetate positron emission tomography for hepatocellular carcinoma and metastases: an alternative tracer for [11C]acetate? Mol Imaging 11:229–239PubMedGoogle Scholar
  13. 13.
    Wahl RL, Jacene H, Kasamon Y et al (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150SCrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schwartz LH, Bogaerts J, Ford R et al (2009) Evaluation of lymph nodes with RECIST 1.1. Eur J Cancer 45:261–267CrossRefPubMedGoogle Scholar
  15. 15.
    Koglin N, Mueller A, Berndt M et al (2011) Specific PET imaging of xC- transporter activity using a (1)(8)F-labeled glutamate derivative reveals a dominant pathway in tumor metabolism. Clin Cancer Res 17:6000–6011CrossRefPubMedGoogle Scholar
  16. 16.
    Fitian AI, Nelson DR, Liu C, Xu Y, Ararat M, Cabrera R (2014) Integrated metabolomic profiling of hepatocellular carcinoma in hepatitis C cirrhosis through GC/MS and UPLC/MS-MS. Liver Intl 34:1428–1444CrossRefGoogle Scholar
  17. 17.
    Zeng J, Yin P, Tan Y et al (2014) Metabolomics study of hepatocellular carcinoma: discovery and validation of serum potential biomarkers by using capillary electrophoresis-mass spectrometry. J Proteome Res 13:3420–3431CrossRefPubMedGoogle Scholar
  18. 18.
    Fages A, Duarte-Salles T, Stepien M et al (2015) Metabolomic profiles of hepatocellular carcinoma in a European prospective cohort. BMC Med 13:242CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gao R, Cheng J, Fan C et al (2015) Serum metabolomics to identify the liver disease-specific biomarkers for the progression of hepatitis to hepatocellular carcinoma. Sci Rep 5:18175CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Huang Q, Tan Y, Yin P et al (2013) Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics. Cancer Res 73:4992–5002CrossRefPubMedGoogle Scholar
  21. 21.
    Lewerenz J, Hewett SJ, Huang Y et al (2013) The cystine/glutamate antiporter system x(c)(−) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 18:522–555CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Baek S, Choi CM, Ahn SH et al (2012) Exploratory clinical trial of (4S)-4-(3-[18F]fluoropropyl)-L-glutamate for imaging xC- transporter using positron emission tomography in patients with non-small cell lung or breast cancer. Clin Cancer Res 18:5427–5437CrossRefPubMedGoogle Scholar

Copyright information

© World Molecular Imaging Society 2016

Authors and Affiliations

  • Gina Kavanaugh
    • 1
    • 2
    • 3
  • Jason Williams
    • 1
    • 2
    • 3
  • Andrew Scott Morris
    • 2
  • Michael L. Nickels
    • 1
    • 2
    • 3
  • Ronald Walker
    • 2
    • 4
  • Norman Koglin
    • 5
  • Andrew W. Stephens
    • 5
  • M. Kay Washington
    • 6
  • Sunil K. Geevarghese
    • 7
  • Qi Liu
    • 8
    • 9
  • Dan Ayers
    • 10
  • Yu Shyr
    • 9
    • 10
    • 11
  • H. Charles Manning
    • 1
    • 2
    • 3
    • 4
    • 12
    • 13
    • 14
    • 15
    • 16
  1. 1.Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleUSA
  2. 2.Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleUSA
  3. 3.Vanderbilt Center for Molecular ProbesVanderbilt University Medical CenterNashvilleUSA
  4. 4.Vanderbilt-Ingram Cancer CenterVanderbilt University Medical CenterNashvilleUSA
  5. 5.Piramal Imaging GmbHBerlinGermany
  6. 6.Department of PathologyVanderbilt University Medical CenterNashvilleUSA
  7. 7.Department of SurgeryVanderbilt University Medical CenterNashvilleUSA
  8. 8.Department of Biomedical InformaticsVanderbilt University School of MedicineNashvilleUSA
  9. 9.Center for Quantitative SciencesVanderbilt University School of MedicineNashvilleUSA
  10. 10.Department of BiostatisticsVanderbilt University School of MedicineNashvilleUSA
  11. 11.Department of Cancer BiologyVanderbilt University School of MedicineNashvilleUSA
  12. 12.Program in Chemical and Physical BiologyVanderbilt University Medical CenterNashvilleUSA
  13. 13.Department of NeurosurgeryVanderbilt University Medical CenterNashvilleUSA
  14. 14.Vanderbilt Institute of Chemical BiologyVanderbilt University Medical CenterNashvilleUSA
  15. 15.Department of Biomedical EngineeringVanderbilt UniversityNashvilleUSA
  16. 16.Department of ChemistryVanderbilt UniversityNashvilleUSA

Personalised recommendations