Skip to main content

Advertisement

Log in

Molecular Imaging with Kupffer Cell-Targeting Nanobodies for Diagnosis and Prognosis in Mouse Models of Liver Pathogenesis

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Kupffer cells (KCs), the liver resident macrophages, are important mediators of tissue homeostasis and pathogen clearance. However, depending on the inflammatory stimuli, KCs have been involved in divergent hepato-protective or hepato-destructive immune responses. The versatility of KCs in response to environmental triggers, in combination with the specific biomarkers they express, make these macrophages attractive in vivo targets for non-invasive monitoring of liver inflammation or pathogenicity. This study aims to determine whether V-set and Ig domain-containing 4 (Vsig4) and C-type lectin domain family (Clec) 4, member F (Clec4F) can be used as imaging biomarkers for non-invasive monitoring of KCs during distinct liver inflammation models.

Procedure

Flow cytometry (FACS), immuno-histochemistry (IHC), and single-photon emission computed tomography (SPECT) with Tc-99m labeled anti-Vsig4 or anti-Clec4F nanobodies (Nbs) was performed to evaluate in mice KC dynamics in concanavalin A (ConA)-induced hepatitis and in non-alcoholic steatohepatitis induced via methionine choline deficiency (MCD).

Results

In homeostatic mice, Nbs targeting Clec4F were found to accumulate and co-localize with Vsig4-targeting Nbs only in the liver. Upon induction of acute hepatitis using ConA, down-regulation of the in vivo Nb imaging signal was observed, reflecting reduction in KC numbers as confirmed by FACS and IHC. On the other hand, induction of steatohepatitis resulted in higher signals in the liver corresponding to higher density of KCs. The Nb-imaging signals returned to normal levels after resolution of the investigated liver diseases.

Conclusions

Anti-Clec4F and anti-Vsig4 Nbs targeting KCs as molecular imaging biomarkers could allow non-invasive monitoring/staging of liver pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pichler BJ, Wehrl HF, Judenhofer MS (2008) Latest advances in molecular imaging instrumentation. J Nucl Med 49(Suppl 2):5S–23S

    Article  PubMed  Google Scholar 

  3. Chakravarty R, Goel S, Cai W (2014) Nanobody: the “Magic Bullet” for molecular imaging? Theranostics 4:386–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Olafsen T, Wu AM (2010) Antibody vectors for imaging. Semin Nucl Med 40:167–181

    Article  PubMed  PubMed Central  Google Scholar 

  5. Muyldermans S, Baral TN, Retamozzo VC et al (2009) Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol 128:178–183

    Article  CAS  PubMed  Google Scholar 

  6. Schoonooghe S, Laoui D, Van Ginderachter J et al (2012) Novel applications of nanobodies for in vivo bio-imaging of inflamed tissues in inflammatory diseases and cancer. Immunobiology 217:1266–1272

    Article  CAS  PubMed  Google Scholar 

  7. De Vos J, Devoogdt N, Lahoutte T, Muyldermans S (2013) Camelid single-domain antibody- fragment engineering for (pre)clinical in vivo molecular imaging applications: adjusting the billet to its target. Expert Opin Biol Ther 13:1149–1160

    Article  PubMed  Google Scholar 

  8. Vaneycken I, Devoogdt N, Van Gassen N et al (2011) Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer. FASEB J 25:2433–2446

    Article  CAS  PubMed  Google Scholar 

  9. Movahedi K, Schoonooghe S, Laoui D et al (2012) Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res 12:4165–4177

    Article  Google Scholar 

  10. Broisat A, Hernot S, Toczek J et al (2012) Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circ Res 110:927–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fallatah HI (2014) Noninvasive biomarkers of liver fibrosis: an overview. Adv Hepatol 2014:357287

    Article  Google Scholar 

  12. Heymann F, Tacke F (2016) Immunology in the liver-from homeostasis to disease. Nat Rev Gastroenterol & Hepatol 13:88–110

    Article  CAS  Google Scholar 

  13. Zheng F, Devoogdt N, Sparkes A et al (2015) Monitoring liver macrophages using nanobodies targeting Vsig4: concanavalin A induced acute hepatitis as paradigm. Immunobiology 220:200–209

    Article  CAS  PubMed  Google Scholar 

  14. Zang X, Allison JP (2006) To be or not to B7. J Clin Invest 116:2590–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haltiwanger RS, Lehrman MA, Eckhardt AE, Hill RL (1986) The distribution and localization of the fucose-binding lectin in rat tissues and the identification of a high affinity form of the mannose/N-acetylglucosamine-binding lectin in rat liver. J Biol Chem 261:7433–7439

    CAS  PubMed  Google Scholar 

  16. Scott CL, Zheng F, De Baetselier P et al (2016) Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer Cells. Nat Commun 7:10321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stijlemans B, Sparkes A, Abels C et al (2015) Murine liver myeloid cell isolation protocol. Bio-protocol 5:e1471

    Article  Google Scholar 

  18. Zheng F, Put S, Bouwens L et al (2014) Molecular imaging with macrophage CRIg-targeting nanobodies for early and preclinical diagnosis in a mouse model of rheumatoid arthritis. J Nucl Med 55:824–829

    Article  CAS  PubMed  Google Scholar 

  19. Put S, Schoonooghe S, Devoogdt N et al (2013) SPECT imaging of joint inflammation with nanobodies targeting the macrophage mannose receptor in a mouse model for rheumatoid arthritis. J Nucl Med 54:807–814

    Article  CAS  PubMed  Google Scholar 

  20. De Groeve K, Deschacht N, De Koninck C et al (2010) Nanobodies as tools for in vivo imaging of specific immune cell types. J Nucl Med 51:782–789

    Article  PubMed  Google Scholar 

  21. Xavier C, Devoogdt N, Hernot S et al (2012) Site-specific labeling of his-tagged Nanobodies with 99mTc: a practical guide. Methods Mol Biol 911:485–490

    Article  CAS  PubMed  Google Scholar 

  22. Vincke C, Loris R, Saerens D et al (2009) General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem 284:3273–3284

    Article  CAS  PubMed  Google Scholar 

  23. Loneing AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2:131–137

    Article  Google Scholar 

  24. Gainkam LO, Caveliers V, Devoogdt N et al (2011) Localization, mechanism and reduction of renal retention of technetium-99m labeled epidermal growth factor receptor-specific nanobody in mice. Contrast Media Mol Imaging 6:85–92

    Article  PubMed  Google Scholar 

  25. Ramadori P, Weiskirchen R, Trebicka J, Streetz K (2015) Mouse models of metabolic liver injury. Lab Anim 49(1 Suppl):47–58

    Article  CAS  PubMed  Google Scholar 

  26. Delbeke D, Pinson CW (2003) 11C-Acetate: a new tracer for the evaluation of hepatocellular carcinoma. J Nucl Med 44:222–223

    PubMed  Google Scholar 

  27. Nishiyama Y, Yamamoto Y, Hino I et al (2003) 99mTc galactosyl human serum albumin liver dynamic SPET for pre-operative assessment of hepatectomy in relation to percutaneous transhepatic portal embolization. Nucl Med Commun 24:809–817

    Article  CAS  PubMed  Google Scholar 

  28. Garin E, Rolland Y, Lenoir L et al (2011) Utility of quantitative Tc-MAA SPECT/CT for yttrium-labelled microsphere treatment planning: calculating vascularized hepatic volume and dosimetric approach. Int J Mol Imaging 2011:398051

    Article  PubMed  PubMed Central  Google Scholar 

  29. Khazen W, M’Bika J, Tomkiewicz C et al (2005) Expression of macrophage-selective markers in human and rodent adipocytes. FEBS Lett 579:5631–5634

    Article  CAS  PubMed  Google Scholar 

  30. Heymann F, Hamesch K, Weiskirchen R, Tacke F (2015) The concanavalin A model of acute hepatitis in mice. Lab Anim 49(1 Suppl):12–20

    Article  CAS  PubMed  Google Scholar 

  31. Anstee QM, Goldin RD (2006) Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int J Exp Pathol 87:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Afonso MB, Rodrigues PM et al (2015) Necroptosis is a key pathogenic event in human and experimental murine models of non-alcoholic steatohepatitis. Clin Sci (Lond) 129:721–739

    Article  CAS  Google Scholar 

  33. Uhlén M, Fagerberg L, Hallström BM et al (2015) Tissue- based map of the human proteome. Science 347:1260419

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Cindy Peleman, Ella Omasta, Marie-Therese Detobel, Maria Slazak, Victor Orimoloye, Lea Brys, Yvon Elkrim and Nadia Abou for technical and secretarial assistance, Dr. Marie-Aline Laute (ULB) for GOT/GPT measurements and Ir. Chloé Abels for providing Clec4F-DTR and littermate mice. Support grants were received from the Agency for Innovation by Science and Technology, FWO-Vlaanderen, the Interuniversity Attraction Poles and the Strategic Research Program (SRP3). FZ received a scholarship from the Top-Notch Student Scholarship Fund of China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Beschin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All applicable institutional and/or national guidelines for the care and use of animals were followed (ECPVA guidelines (CETS no. 123) and approved by the VUB Ethical Committee (Lab Accreditation number: LA1210220).

Additional information

Fang Zheng and Amanda Sparkes share first authorship

Nick Devoogdt, Geert Raes and Alain Beschin share senior authorship

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 629 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, F., Sparkes, A., De Baetselier, P. et al. Molecular Imaging with Kupffer Cell-Targeting Nanobodies for Diagnosis and Prognosis in Mouse Models of Liver Pathogenesis. Mol Imaging Biol 19, 49–58 (2017). https://doi.org/10.1007/s11307-016-0976-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-016-0976-3

Key words

Navigation