Skip to main content

Advertisement

Log in

Evaluation of [18F]Fluorothymidine as a Biomarker for Early Therapy Response in a Mouse Model of Colorectal Cancer

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

In oncology, positron emission tomography imaging using dedicated tracers as biomarkers may assist in early evaluation of therapy efficacy. Using 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT), we investigated the early effects of chemotherapeutic treatment on cancer cell proliferation in a BRAF-mutated colorectal cancer xenograft model.

Procedures

Colo205 subcutaneously inoculated animals underwent 90-min dynamic imaging before and 24 h after treatment with vehicle (control), cetuximab (resistant) or irinotecan (sensitive). Total distribution volume was quantified from dynamic data, and standardized uptake values as well as tumor-to-blood ratios were calculated from static images averaged over the last 20 min. In vivo imaging data was correlated with ex vivo proliferation and thymidine metabolism proteins.

Results

All imaging parameters showed a significant post-treatment decrease from [18F]FLT baseline uptake for the irinotecan group (p ≤ 0.001) as compared with the cetuximab and vehicle group and correlated strongly with each other (p ≤ 0.0001). In vivo data were in agreement with Ki67 staining, showing a significantly lower percentage of Ki67-positive cells in the irinotecan group as compared with other groups (p ≤ 0.0001). Tumor expression of thymidine kinase 1 phosphorylated on serine 13, thymidylate synthase, and thymidine phosphorylase remained unaffected, while thymidine kinase 1 expression was, surprisingly, significantly higher in irinotecan-treated animals (p ≤ 0.01). In contrast, tumor ATP levels were lowest in this group.

Conclusions

[18F]FLT positron emission tomography was found to be a suitable biomarker of early tumor response to anti-proliferative treatment, with static imaging not being inferior to full compartmental analysis in our xenograft model. The dynamics of thymidine kinase 1 protein expression and protein activity in low ATP environments merits further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386

    Article  CAS  PubMed  Google Scholar 

  2. Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4:1334–1336

    Article  CAS  PubMed  Google Scholar 

  3. Bading JR, Shields AF (2008) Imaging of cell proliferation: status and prospects. J Nucl Med 49:64S–80S

    Article  CAS  PubMed  Google Scholar 

  4. Hu C-M, Chang Z-F (2007) Mitotic control of dTTP pool: a necessity or coincidence? J Biomed Sci 14:491–497

    Article  CAS  PubMed  Google Scholar 

  5. Munch-Petersen B, Cloos L, Jensen HK, Tyrsted G (1995) Human thymidine kinase 1. Regulation in normal and malignant cells. Adv Enzym Regul 35:69–89

    Article  CAS  Google Scholar 

  6. Li C-L, Lu C-Y, Ke P-Y, Chang Z-F (2004) Perturbation of ATP-induced tetramerization of human cytosolic thymidine kinase by substitution of serine-13 with aspartic acid at the mitotic phosphorylation site. Biochem Biophys Res Commun 313:587–593

    Article  CAS  PubMed  Google Scholar 

  7. Soloviev D, Lewis D, Honess D, Aboagye E (2012) [(18)F]FLT: an imaging biomarker of tumour proliferation for assessment of tumour response to treatment. Eur J Cancer 48:416–424

    Article  CAS  PubMed  Google Scholar 

  8. Mudd SR, Holich KD, Voorbach MJ et al (2011) Pharmacodynamic evaluation of irinotecan therapy by FDG and FLT PET/CT imaging in a colorectal cancer xenograft model. Mol Imaging Biol 14:617–624

    Article  Google Scholar 

  9. McKinley ET, Smith RA, Zhao P et al (2013) 3′-Deoxy-3′-18F-fluorothymidine pet predicts response to V600EBRAF-targeted therapy in preclinical models of colorectal cancer. J Nucl Med 54:424–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tomasi G, Turkheimer F, Aboagye E (2011) Importance of quantification for the analysis of PET data in oncology: review of current methods and trends for the future. Mol Imaging Biol 14:131–146

    Article  Google Scholar 

  11. Gunn RN, Gunn SR, Cunningham VJ (2001) Positron emission tomography compartmental models. J Cereb Blood Flow Metab 21:635–652

    Article  CAS  PubMed  Google Scholar 

  12. Kim SJ, Lee JS, Im KC et al (2008) Kinetic modeling of 3“-deoxy-3-”18F-fluorothymidine for quantitative cell proliferation imaging in subcutaneous tumor models in mice. J Nucl Med 49:2057–2066

    Article  PubMed  Google Scholar 

  13. Jonker DJ, O’Callaghan CJ, Karapetis CS et al (2007) Cetuximab for the treatment of colorectal cancer. N Engl J Med 357:2040–2048

    Article  CAS  PubMed  Google Scholar 

  14. Di Nicolantonio F, Martini M, Molinari F et al (2008) Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 26:5705–5712

    Article  PubMed  Google Scholar 

  15. Pietrantonio F, Petrelli F, Coinu A et al (2015) Predictive role of BRAF mutations in patients with advanced colorectal cancer receiving cetuximab and panitumumab: a meta-analysis. Eur J Cancer 51:587–594

    Article  CAS  PubMed  Google Scholar 

  16. Rothenberg ML (2001) Irinotecan (CPT-11): recent developments and future directions—colorectal cancer and beyond. Oncologist 6:66–80

    Article  CAS  PubMed  Google Scholar 

  17. Voeller DM, Grem JL, Pommier Y et al (2000) Identification and proposed mechanism of action of thymidine kinase inhibition associated with cellular exposure to camptothecin analogs. Cancer Chemother Pharmacol 45:409–416

    Article  CAS  PubMed  Google Scholar 

  18. Visser EP, Disselhorst JA, Brom M et al (2009) Spatial resolution and sensitivity of the Inveon small-animal PET scanner. J Nucl Med 50:139–147

    Article  PubMed  Google Scholar 

  19. Deleye S, Heylen M, Deiteren A et al (2014) Continuous flushing of the bladder in rodents reduces artifacts and improves quantification in molecular imaging. Mol Imaging 13:1–12

    CAS  Google Scholar 

  20. Brockenbrough JS, Morihara JK, Hawes SE et al (2009) Thymidine kinase 1 and thymidine phosphorylase expression in non-small-cell lung carcinoma in relation to angiogenesis and proliferation. J Histochem Cytochem 57:1087–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee W-C, Chang C-H, Ho C-L et al (2011) Early detection of tumor response by FLT/MicroPET imaging in a C26 murine colon carcinoma solid tumor animal model. J Biomed Biotechnol 2011:1–7

    Google Scholar 

  22. Troost EGC, Bussink J, Hoffmann AL et al (2010) 18F-FLT PET/CT for early response monitoring and dose escalation in oropharyngeal tumors. J Nucl Med 51:866–874

    Article  PubMed  Google Scholar 

  23. Frings V, Yaqub M, Hoyng LL et al (2014) Assessment of simplified methods to measure 18F-FLT uptake changes in EGFR-mutated non-small cell lung cancer patients undergoing EGFR tyrosine kinase inhibitor treatment. J Nucl Med 55:1417–1423

    Article  CAS  PubMed  Google Scholar 

  24. Brockenbrough JS, Souquet T, Morihara JK et al (2011) Tumor 3“-deoxy-3-”18F-fluorothymidine (18F-FLT) uptake by PET correlates with thymidine kinase 1 expression: static and kinetic analysis of 18F-FLT PET studies in lung tumors. J Nucl Med 52:1181–1188

    Article  PubMed  Google Scholar 

  25. Vesselle H, Grierson J, Muzi M et al (2002) In vivo validation of 3′-deoxy-3′-[(18)F]fluorothymidine ([(18)F]FLT) as a proliferation imaging tracer in humans: correlation of [(18)F]FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clin Cancer Res 8:3315–3323

    CAS  PubMed  Google Scholar 

  26. McKinley ET, Ayers GD, Smith RA et al (2013) Limits of [18F]-FLT PET as a biomarker of proliferation in oncology. PLoS ONE 8:e58938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang CC, Yan Z, Li W et al (2012) [18F]FLT-PET imaging does not always “light up” proliferating tumor cells. Clin Cancer Res 18:1303–1312

    Article  CAS  PubMed  Google Scholar 

  28. Keen H, Pichler B, Kukuk D et al (2011) An evaluation of 2-deoxy-2-[18F]fluoro-D-glucose and 3′-deoxy-3′-[18F]-fluorothymidine uptake in human tumor xenograft models. Mol Imaging Biol 14:355–365

    Article  Google Scholar 

  29. Lee SJ, Kim SY, Chung JH et al (2010) Induction of thymidine kinase 1 after 5-fluorouracil as a mechanism for 3“-deoxy-3-”[18F]fluorothymidine flare. Biochem Pharmacol 80:1528–1536

    Article  CAS  PubMed  Google Scholar 

  30. Kenny LM, Contractor KB, Stebbing J et al (2009) Altered tissue 3“-deoxy-3-”[18F]fluorothymidine pharmacokinetics in human breast cancer following capecitabine treatment detected by positron emission tomography. Clin Cancer Res 15:6649–6657

    Article  CAS  PubMed  Google Scholar 

  31. Barthel H, Cleij MC, Collingridge DR et al (2003) 3“-Deoxy-3-”[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res 63:3791–3798

    CAS  PubMed  Google Scholar 

  32. Chang ZF, Huang DY, Chi LM (1998) Serine 13 is the site of mitotic phosphorylation of human thymidine kinase. J Biol Chem 273:12095–12100

    Article  CAS  PubMed  Google Scholar 

  33. Segura-Peña D, Lutz S, Monnerjahn C et al (2007) Binding of ATP to TK1-like enzymes is associated with a conformational change in the quaternary structure. J Mol Biol 369:129–141

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Philippe Joye and Caroline Berghmans of the Molecular Imaging Center Antwerp for their valuable technical assistance.

This work was funded by the University of Antwerp through a Bijzonder Onderzoeksfond (BOF27327). D.T. is funded by the Research Foundation Flanders (FWO) through a postdoctoral grant (1211313N). Si.S and C.V. are supported by the Innovative Medicines Initiative Joint Undertaking (www.imi.europa.eu) under grant agreement number 115151, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in-kind contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrid Stroobants.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 566 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapic, S., Vangestel, C., Verhaeghe, J. et al. Evaluation of [18F]Fluorothymidine as a Biomarker for Early Therapy Response in a Mouse Model of Colorectal Cancer. Mol Imaging Biol 19, 109–119 (2017). https://doi.org/10.1007/s11307-016-0974-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-016-0974-5

Key words

Navigation