Skip to main content
Log in

Detection of Klebsiella. Pneumoniae Infection with an Antisense Oligomer Against its Ribosomal RNA

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Previously, we demonstrated specific accumulation into bacteria of a 12-mer phosphorodiamidate morpholino (MORF) oligomer complementary to a ribosomal RNA (rRNA) segment found in all bacteria using the universal probe called Eub338 (Eub). Here, two MORF oligomers Eco and Kpn with sequences specific to the rRNA of Escherichia coli (Eco) and Klebsiella pneumoniae (Kpn) were investigated along with Eub and control (nonEub).

Procedures

To determine bacterial rRNA binding, oligomers were tagged with Alexa Fluor 633 (AF633) for fluorescence in situ hybridization (FISH) and fluorescence microscopy, and radiolabeled with technetium-99m (Tc-99m) for biodistribution and SPECT imaging in infected mice.

Results

By both FISH and fluorescence microscopy, Eub showed a positive signal in both E. coli and K. pneumoniae as expected, and Kpn showed significantly higher accumulation in K. pneumoniae with near background in E. coli (p < 0.01). Conversely, Eco was positive in both E. coli and K. pneumoniae, hence nonspecific. As determined by biodistribution, the accumulation of [99mTc]Kpn was higher in the thigh infected with live K. pneumoniae than with live E. coli (p = 0.05), and significantly higher than with heat-killed K. pneumoniae (p = 0.02) in the target thigh. By SPECT imaging, the accumulation of [99mTc]Kpn was obviously higher in its specific target of K. pneumoniae compared to an E. coli infected thigh.

Conclusions

Kpn complementary to the rRNA of K. pneumoniae, labeled with Tc-99m or AF633, demonstrated specific binding to fixed and live K. pneumoniae in culture and in infected mice such that Tc-99m-labeled Kpn as the MORF oligomer may be useful for K. pneumoniae infection detection through imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172(2):762–770

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kempf VA, Trebesius K, Autenrieth IB (2000) Fluorescent in situ hybridization allows rapid identification of microorganisms in blood cultures. J Clin Microbiol 38(2):830–838

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ouverney CC, Fuhrman JA (1997) Increase in fluorescence intensity of 16S rRNA in situ hybridization in natural samples treated with chloramphenicol. Appl Environ Microbiol 63(7):2735–2740

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Moter A, Gobel UB (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbio Meth 41:85–112

    Article  CAS  Google Scholar 

  5. Giovannoni SJ, DeLong EF, Olsen GJ et al (1988) Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. Bacteriol 170(2):720–726

    CAS  Google Scholar 

  6. Summerton JE (2007) Morpholino, siRNA, and S-DNA compared: impact of structure and mechanism of action on off-target effects and sequence specificity. Curr Top Med Chem 7:651–660

    Article  CAS  PubMed  Google Scholar 

  7. Liu G, Mang’era K, Liu N et al (2002) Tumor pretargeting in mice using (99m)Tc-labeled morpholino, a DNA analog. J Nucl Med 43(3):384–391

    CAS  PubMed  Google Scholar 

  8. Liu G, He J, Dou S et al (2004) Pretargeting in tumored mice with radiolabeled morpholino oligomer showing low kidney uptake. Eur J Nucl Med Mol Imaging 31(3):417–424

    Article  CAS  PubMed  Google Scholar 

  9. Chen L, Wang Y, Cheng D et al (2013) 99mTc-MORF oligomers specific for bacterial ribosomal RNA as potential specific infection imaging agents. Bioorg Med Chem 21(21):6523–6530

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Chen L, Liu X et al (2013) Detection of Aspergillus fumigatus pulmonary fungal infections in mice with (99m)Tc-labeled MORF oligomers targeting ribosomal RNA. Nucl Med Biol 40(1):89–96

    Article  PubMed  Google Scholar 

  11. Geller BL, Deere JD, Stein DA et al (2003) Inhibition of gene expression in Escherichia coli by antisense phosphorodiamidate morpholino oligomers. Antimicrob Agents Chemother 47(10):3233–3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Y, Liu G, Hnatowich DJ (2006) Methods for MAG3 conjugation and 99mTc radiolabeling of biomolecules. Nat Protocols 1:1477–1480

    Article  CAS  PubMed  Google Scholar 

  13. Sheridan GEC, Masters CI, Shallcross JA et al (1998) Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cells. Appl Environ Microb 64(4):1313–1318

    CAS  Google Scholar 

  14. Kallen AJ, Hidron AI, Patel J et al (2010) Multidrug resistance among Gram-negative pathogens that caused healthcare-associated infections reported to the national healthcare safety network, 2006–2008. Infect Control Hosp Epidemiol 31(5):528–531

    Article  PubMed  Google Scholar 

  15. Sahm DF, Thornsberry C, Mayfield DC et al (2001) Multidrug-resistant urinary tract isolates of Escherichia coli: prevalence and patient demographics in the United States in 2000. Antimicrob Agents Chemother 45(5):1402–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Deere J, Iversen P, Geller BL (2005) Antisense phosphorodiamidate morpholino oligomer length and target position effects on gene-specific inhibition in Escherichia coli. Antimicrob Agents Chemother 49:249–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Uyttendaele M, Bastiaansen A, Debevere J (1997) Evaluation of the NASBA nucleic acid amplification system for assessment of the viability of Campylobacter jejuni. Int J Food Microbiol 37:13–20

    Article  CAS  PubMed  Google Scholar 

  18. Aellen S, Que YA, Guignard B et al (2006) Detection of live and antibiotic-killed bacteria by quantitative real-time PCR of specific fragments of rRNA. Antimicrob Agents Chemother 50(6):1913–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Funding was provided by a grant from NIH no. AI070857.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Rusckowski.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

The studies in mice were with the approval of the Institutional Animal Care and Use Committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Cheng, D., Liu, G. et al. Detection of Klebsiella. Pneumoniae Infection with an Antisense Oligomer Against its Ribosomal RNA. Mol Imaging Biol 18, 527–534 (2016). https://doi.org/10.1007/s11307-015-0927-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0927-4

Key words

Navigation