Skip to main content

Advertisement

Log in

In Vivo Detection of miRNA Expression in Tumors Using an Activatable Nanosensor

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The development of tools for the analysis of microRNA (miRNA) function in tumors can advance our diagnostic and prognostic capabilities. Here, we describe the development of technology for the profiling of miRNA expression in the tumors of live animals.

Procedures

The approach is based on miRNA nanosensors consisting of sensor oligonucleotides conjugated to magnetic nanoparticles for systemic delivery. Feasibility was demonstrated for the detection of miR-10b, implicated in epithelial to mesenchymal transition and the development of metastasis. The miR-10b nanosensor was tested in vivo in two mouse models of cancer. In the first model, mice were implanted subcutaneously with MDA-MB-231-luc-D3H2LN tumors, in which miR-10b was inhibited. In the second model, mice were implanted bilaterally with metastatic MDA-MB-231 and nonmetastatic MCF-7 cells. The nanosensors were injected intravenously, and fluorescence intensity in the tumors was monitored over time.

Results

We showed that the described nanosensors are capable of discriminating between tumors based on their expression of miR-10b. Radiant efficiency was higher in the miR-10b-active tumors than in the miR-10b-inhibited tumors and in the MDA-MB-231 tumors relative to the MCF-7 tumors.

Conclusions

The described technology provides an important tool that could be used to answer questions about microRNA function in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ling H, Fabbri M, Calin GA (2013) MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12:847–865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Yoo B, Kavishwar A, Ghosh SK et al (2014) Detection of miRNA expression in intact cells using activatable sensor oligonucleotides. Chem Biol 21:199–204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bracken CP, Szubert JM, Mercer TR et al (2011) Global analysis of the mammalian RNA degradome reveals widespread miRNA-dependent and miRNA-independent endonucleolytic cleavage. Nucleic Acids Res 39:5658–5668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Pohlmann C, Sprinzl M (2010) Electrochemical detection of microRNAs via gap hybridization assay. Anal Chem 82:4434–4440

    Article  PubMed  Google Scholar 

  5. Song R, Ro S, Yan W (2010) In situ hybridization detection of microRNAs. Methods Mol Biol 629:287–294

    PubMed Central  PubMed  Google Scholar 

  6. Li W, Zhao B, Jin Y, Ruan K (2010) Development of a low-cost detection method for miRNA microarray. Acta Biochim Biophys Sin (Shanghai) 42:296–301

    Article  CAS  Google Scholar 

  7. Husale S, Persson HH, Sahin O (2009) DNA nanomechanics allows direct digital detection of complementary DNA and microRNA targets. Nature 462:1075–1078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Mandir JB, Lockett MR, Phillips MF et al (2009) Rapid determination of RNA accessible sites by surface plasmon resonance detection of hybridization to DNA arrays. Anal Chem 81:8949–8956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Driskell JD, Primera-Pedrozo OM, Dluhy RA et al (2009) Quantitative surface-enhanced Raman spectroscopy based analysis of microRNA mixtures. Appl Spectrosc 63:1107–1114

    Article  CAS  PubMed  Google Scholar 

  10. Havelda Z (2010) In situ detection of miRNAs using LNA probes. Methods Mol Biol 592:127–136

    Article  CAS  PubMed  Google Scholar 

  11. Lu J, Tsourkas A (2009) Imaging individual microRNAs in single mammalian cells in situ. Nucleic Acids Res 37:e100

    Article  PubMed Central  PubMed  Google Scholar 

  12. Nuovo GJ, Elton TS, Nana-Sinkam P et al (2009) A methodology for the combined in situ analyses of the precursor and mature forms of microRNAs and correlation with their putative targets. Nat Protoc 4:107–115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Silahtaroglu AN, Nolting D, Dyrskjot L et al (2007) Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification. Nat Protoc 2:2520–2528

    Article  CAS  PubMed  Google Scholar 

  14. Nelson PT, Baldwin DA, Scearce LM et al (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1:155–161

    Article  CAS  PubMed  Google Scholar 

  15. Moore A, Weissleder R, Bogdanov A Jr (1997) Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. J Magn Reson Imaging 7:1140–1145

    Article  CAS  PubMed  Google Scholar 

  16. Fabian MR, Sonenberg N (2012) The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19:586–593

    Article  CAS  PubMed  Google Scholar 

  17. van Rooij E, Kauppinen S (2014) Development of microRNA therapeutics is coming of age. EMBO Mol Med 6:851–864

    Article  PubMed Central  PubMed  Google Scholar 

  18. Hartig JS, Grune I, Najafi-Shoushtari SH, Famulok M (2004) Sequence-specific detection of MicroRNAs by signal-amplifying ribozymes. J Am Chem Soc 126:722–723

    Article  CAS  PubMed  Google Scholar 

  19. Ko HY, Hwang W, Lee DS, Kim S (2009) A reporter gene imaging system for monitoring microRNA biogenesis. Nat Protoc 4:1663–1669

    Article  CAS  PubMed  Google Scholar 

  20. Cissell KA, Rahimi Y, Shrestha S et al (2008) Bioluminescence-based detection of microRNA, miR21 in breast cancer cells. Anal Chem 80:2319–2325

    Article  CAS  PubMed  Google Scholar 

  21. Tu Y, Li W, Wu P et al (2013) Fluorescence quenching of graphene oxide integrating with the site-specific cleavage of the endonuclease for sensitive and selective microRNA detection. Anal Chem 85:2536–2542

    Article  CAS  PubMed  Google Scholar 

  22. Yigit MV, Ghosh SK, Kumar M et al (2013) Context-dependent differences in miR-10b breast oncogenesis can be targeted for the prevention and arrest of lymph node metastasis. Oncogene 32:1530–1538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–688

    Article  CAS  PubMed  Google Scholar 

  24. Ma L, Reinhardt F, Pan E et al (2010) Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 28:341–347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Baffa R, Fassan M, Volinia S et al (2009) MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol 219:214–221

    Article  CAS  PubMed  Google Scholar 

  26. Tromberg BJ, Pogue BW, Paulsen KD et al (2008) Assessing the future of diffuse optical imaging technologies for breast cancer management. Med Phys 35:2443–2451

    Article  PubMed Central  PubMed  Google Scholar 

  27. Lee BT, Hutteman M, Gioux S et al (2010) The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in perforator flap breast reconstruction. Plast Reconstr Surg 126:1472–1481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Bhushan KR, Misra P, Liu F et al (2008) Detection of breast cancer microcalcifications using a dual-modality SPECT/NIR fluorescent probe. J Am Chem Soc 130:17648–17649

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Yoo B, Ghosh SK, Kumar M et al (2014) Design of nanodrugs for miRNA targeting in tumor cells. J Biomed Nanotechnol 10:1114–1122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Medarova Z, Pham W, Farrar C et al (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13:372–377

    Article  CAS  PubMed  Google Scholar 

  31. Kumar M, Yigit M, Dai G et al (2010) Image-guided breast tumor therapy using a small interfering RNA nanodrug. Cancer Res 70:7553–7561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Wang J, Sui M, Fan W (2010) Nanoparticles for tumor targeted therapies and their pharmacokinetics. Curr Drug Metab 11:129–141

    Article  CAS  PubMed  Google Scholar 

  33. Akinc A, Thomas M, Klibanov AM, Langer R (2005) Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 7:657–663

    Article  CAS  PubMed  Google Scholar 

  34. Hong S, Leroueil PR, Majoros IJ et al (2007) The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol 14:107–115

    Article  CAS  PubMed  Google Scholar 

  35. Weissleder R, Kelly K, Sun EY et al (2005) Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol 23:1418–1423

    Article  CAS  PubMed  Google Scholar 

  36. Harisinghani MG, Barentsz J, Hahn PF et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491–2499

    Article  PubMed  Google Scholar 

  37. Michel SC, Keller TM, Frohlich JM et al (2002) Preoperative breast cancer staging: MR imaging of the axilla with ultrasmall superparamagnetic iron oxide enhancement. Radiology 225:527–536

    Article  PubMed  Google Scholar 

  38. Chen W, Cai F, Zhang B et al (2013) The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers. Tumour Biol 34:455–462

    Article  CAS  PubMed  Google Scholar 

  39. Iyevleva AG, Kuligina E et al (2012) High level of miR-21, miR-10b, and miR-31 expression in bilateral vs. unilateral breast carcinomas. Breast Cancer Res Treat 131:1049–1059

    Article  CAS  PubMed  Google Scholar 

  40. Ouyang M, Li Y, Ye S et al (2014) MicroRNA profiling implies new markers of chemoresistance of triple-negative breast cancer. PLoS ONE 9:e96228

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the National Institutes of Health (R01CA16346101A1 from the National Cancer Institute to ZM and 5T32CA009502 to AM) and the Breast Cancer Alliance (Young Investigator Award to ZM) for funding support.

Funding

The study was supported under grants R01CA16346101A1 from the National Cancer Institute to ZM, the Young Investigator Award by the Breast Cancer Alliance to ZM, and 5T32CA009502 to AM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna Moore or Zdravka Medarova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Supplemental Figure 1. Relative fluorescence intensity in miR-10b active and miR-10b inhibited MDA-MB-231 tumors at a early time points after nanosensor injection (0–3 h) and b late time points after nanosensor injection (3–24 h). (PDF 435 kb)

Supplemental Figure 2. Relative fluorescence intensity in MDA-MB-231 and MCF-7 tumors at a early time points after nanosensor injection (0–3 h) and b. late time points after nanosensor injection (3–40 h).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, B., Kavishwar, A., Ross, A. et al. In Vivo Detection of miRNA Expression in Tumors Using an Activatable Nanosensor. Mol Imaging Biol 18, 70–78 (2016). https://doi.org/10.1007/s11307-015-0863-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0863-3

Key words

Navigation