Skip to main content
Log in

In Vivo MR Imaging of Fibrin in a Neuroblastoma Tumor Model by Means of a Targeting Gd-Containing Peptide

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

A magnetic resonance imaging contrast agent based on a tetrameric Gd-DTPA-like system linked to a fibrin-targeting peptide (Gd-F) has been designed for in vivo tumor characterization.

Procedures

Gd-F was synthesized following Fmoc-SPPS strategy. Binding was measured using soluble fibrin DD(E) fragment and a dried fibrin assay. Contrast efficiency was tested on human and mouse clots and in vivo on Neuro2A tumor model. An anti-thrombotic drug was used to evaluate Gd-F sensitivity for changes in fibrin availability at the tumor site.

Results

The high relaxivity of Gd-F (42 mM−1 s−1, per molecule) yielded a strong signal enhancement in human and murine clots. High contrast was also measured in vivo in Neuro2A tumors, with a persistent enhancement in tumor rim and stroma. Upon treatment with an anti-thrombotic drug, the contrast uptake was significantly reduced in the tumor area confirming the specificity of the probe.

Conclusions

Gd-F resulted to be an efficient probe for tumor delineation and for monitoring fibrin deposits during tumor progression and anti-thrombotic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nagy JA, Brown LF, Senger DR et al (1989) Pathogenesis of tumor stroma generation: a critical role for leaky blood vessels and fibrin deposition. Biochim Biophys Acta 948:305–326

    CAS  PubMed  Google Scholar 

  2. Costantini V, Zacharski LR (1992) The role of fibrin in tumor metastasis. Cancer Metastasis Rev 11:283–290

    Article  CAS  PubMed  Google Scholar 

  3. Caine GJ, Stonelake PS, Lip GY et al (2002) The hypercoagulable state of malignancy: pathogenesis and current debate. Neoplasia 4:465–473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Falanga A, Marchetti M, Vignoli A (2013) Coagulation and cancer: biological and clinical aspects. J Thromb Haemost 11:223–233

    Article  CAS  PubMed  Google Scholar 

  5. Yu X, Song SK, Chen J et al (2000) High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn Reson Med 44:867–872

    Article  CAS  PubMed  Google Scholar 

  6. Flacke S, Fischer S, Scott MJ et al (2001) Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 104:1280–1285

    Article  CAS  PubMed  Google Scholar 

  7. Sirol M, Aguinaldo JG, Graham PB et al (2005) Fibrin-targeted contrast agent for improvement of in vivo acute thrombus detection with magnetic resonance imaging. Atherosclerosis 182:79–85

    Article  CAS  PubMed  Google Scholar 

  8. Ciesienski KL, Yang Y, Ay I et al (2013) Fibrin-targeted PET probes for the detection of thrombi. Mol Pharm 10:1100–1110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Starmans LW, van Duijnhoven SM, Rossin R et al (2013) SPECT imaging of fibrin using fibrin-binding peptides. Contrast Media Mol Imaging 8:229–237

    Article  CAS  PubMed  Google Scholar 

  10. Starmans LW, van Duijnhoven SM, Rossin R et al (2013) Evaluation of 111In-labelled EPep and FibPep as tracers for fibrin PECT imaging. Mol Pharm 10:4309–4321

    Article  CAS  PubMed  Google Scholar 

  11. Jaffer FA, Tung CH, Wykrzykowska JJ et al (2004) Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi. Circulation 110:170–176

    Article  CAS  PubMed  Google Scholar 

  12. Hara T, Bhayana B, Thompson B et al (2012) Molecular imaging of fibrin deposition in deep vein thrombosis using fibrin-targeted near-infrared fluorescence. JACC Cardiovasc Imaging 5:607–615

    Article  PubMed Central  PubMed  Google Scholar 

  13. Botnar RM, Perez AS, Witte S et al (2004) In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent. Circulation 109:2023–2029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Sirol M, Fuster V, Badimon JJ et al (2005) Chronic thrombus detection with in vivo magnetic resonance imaging and a fibrin-targeted contrast agent. Circulation 112:1594–1600

    Article  PubMed  Google Scholar 

  15. Spuentrup E, Buecker A, Katoh M et al (2005) Molecular magnetic resonance imaging of coronary thrombosis and pulmonary emboli with a novel fibrin-targeted contrast agent. Circulation 111:1377–1382

    Article  CAS  PubMed  Google Scholar 

  16. Stracke CP, Katoh M, Wiethoff AJ et al (2007) Molecular MRI of cerebral venous sinus thrombosis using a new fibrin-specific MR contrast agent. Stroke 38:1476–1481

    Article  CAS  PubMed  Google Scholar 

  17. Overoye-Chan K, Koerner S, Looby RJ et al (2008) EP-2104R: a fibrin-specific gadolinium-Based MRI contrast agent for detection of thrombus. J Am Chem Soc 130:6025–6039

    Article  CAS  PubMed  Google Scholar 

  18. Uppal R, Ay I, Dai G et al (2010) Molecular MRI of intracranial thrombus in a rat ischemic stroke model. Stroke 41:1271–1277

    Article  PubMed Central  PubMed  Google Scholar 

  19. Spuentrup E, Botnar RM, Wiethoff AJ et al (2008) MR imaging of thrombi using EP-2104R, a fibrin-specific contrast agent: initial results in patients. Eur Radiol 18:1995–2005

    Article  PubMed  Google Scholar 

  20. Vymazal J, Spuentrup E, Cardenas-Molina G et al (2009) Thrombus imaging with fibrin-specific gadolinium-based MR contrast agent EP-2104R: results of a phase II clinical study of feasibility. Investig Radiol 44:697–704

    Article  CAS  Google Scholar 

  21. Morelli JN, Runge VM, Williams JM et al (2011) Evaluation of a fibrin-binding gadolinium chelate peptide tetramer in a brain glioma model. Investig Radiol 46:169–177

    Article  CAS  Google Scholar 

  22. Tan M, Burden-Gulley SM, Li W et al (2012) MR molecular imaging of prostate cancer with a peptide-targeted contrast agent in a mouse orthotopic prostate cancer model. Pharm Res 29:953–960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Uppal R, Medarova Z, Farrar CT et al (2012) Molecular imaging of fibrin in a breast cancer xenograft mouse model. Investig Radiol 47:553–558

    Article  CAS  Google Scholar 

  24. Chow AM, Tan M, Gao DS et al (2013) Molecular MRI of liver fibrosis by a peptide-targeted contrast agent in an experimental mouse model. Investig Radiol 48:46–54

    Article  CAS  Google Scholar 

  25. Villaraza AJ, Bumb A, Brechbiel MW (2010) Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev 110:2921–2959

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Botta M, Tei L (2012) Relaxivity enhancement in macromolecular and nanosized GdIII-based MRI Contrast Agents. Eur J Inorg Chem. 1945–1960

  27. Wescott CR, Beltzer JP, Sato AK, Dyax Corp (2002) Fibrin binding moieties useful as imaging agents. Patent WO 02/055544 A2

  28. Anelli PL, Fedeli F, Gazzotti O et al (1999) L-Glutamic acid and L-lysine as useful building blocks for the preparation of bifunctional DTPA-like ligands. Bioconjug Chem 10:137–140

    Article  CAS  PubMed  Google Scholar 

  29. Lattuada L, Barge A, Cravotto G et al (2011) The synthesis and application of polyamino polycarboxylic bifunctional chelating agents. Chem Soc Rev 40:3019–3049

    Article  CAS  PubMed  Google Scholar 

  30. Barge A, Cravotto G, Gianolio E et al (2006) How to determine free Gd and free ligand in solution of Gd chelates. A technical note. Contrast Media Mol Imaging 1:184–188

    Article  PubMed  Google Scholar 

  31. Moskowitz KA, Budzynski AZ (1994) The (DD)E complex is maintained by a composite fibrin polymerization site. Biochemistry 33:12937–12944

    Article  CAS  PubMed  Google Scholar 

  32. Tymkewycz PM, Creighton-Kempsford LJ, Hockley D et al (1992) Screening for fibrin specific monoclonal antibodies: the development of a new procedure. Thromb Haemost 68:48–53

    CAS  PubMed  Google Scholar 

  33. Yilmaz A, Ulaka FS, Batun MS (2004) Proton T1 and T2 relaxivities of serum proteins. Magn Reson Imaging 22:683–688

    Article  CAS  PubMed  Google Scholar 

  34. Giesel FL, von Tengg-Kobligk H, Wilkinson ID et al (2006) Influence of human serum albumin on longitudinal and transverse relaxation rates (R 1 and R 2) of magnetic resonance contrast agents. Investig Radiol 41:222–228

    Article  CAS  Google Scholar 

  35. Bogdanov A Jr, Mazzanti ML (2011) Molecular magnetic resonance contrast agents for the detection of cancer: past and present. Semin Oncol 38:42–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Nair SA, Kolodziej AF, Bhole G et al (2008) Monovalent and bivalent fibrin-specific MRI contrast agents for detection of thrombus. Angew Chem Int Ed Engl 47:4918–4921

    Article  CAS  PubMed  Google Scholar 

  37. Borsig L (2010) Antimetastatic activities of heparins and modified heparins. Experimental evidence. Thromb Res 125(Suppl 2):S66–S71

    Article  PubMed  Google Scholar 

  38. Tei L, Aime S, Uggeri F et al (2008) Accurate delineation of prostate cancer region by fibrin targeting MRI agents in TRAMP mouse model, World Molecular Imaging Congress, Nice, France

  39. Tei L, Mazooz G, Shellef Y et al (2010) Novel MRI and fluorescent probes responsive to the Factor XIII transglutaminase activity. Contrast Media Mol Imaging 5:213–222

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by funding from AIRC Investigator Grant—IG 2013, prog. N.14565 (S.A.). ESF COST Action TD1004 is also acknowledged. The authors thank Simona Ramponi and Adriana Grotti, CRB Bracco Imaging S.p.A., for technical assistance and support with tumor model.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Aime.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 6092 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaabane, L., Tei, L., Miragoli, L. et al. In Vivo MR Imaging of Fibrin in a Neuroblastoma Tumor Model by Means of a Targeting Gd-Containing Peptide. Mol Imaging Biol 17, 819–828 (2015). https://doi.org/10.1007/s11307-015-0846-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-015-0846-4

Key words

Navigation