Nagy JA, Brown LF, Senger DR et al (1989) Pathogenesis of tumor stroma generation: a critical role for leaky blood vessels and fibrin deposition. Biochim Biophys Acta 948:305–326
CAS
PubMed
Google Scholar
Costantini V, Zacharski LR (1992) The role of fibrin in tumor metastasis. Cancer Metastasis Rev 11:283–290
CAS
Article
PubMed
Google Scholar
Caine GJ, Stonelake PS, Lip GY et al (2002) The hypercoagulable state of malignancy: pathogenesis and current debate. Neoplasia 4:465–473
PubMed Central
CAS
Article
PubMed
Google Scholar
Falanga A, Marchetti M, Vignoli A (2013) Coagulation and cancer: biological and clinical aspects. J Thromb Haemost 11:223–233
CAS
Article
PubMed
Google Scholar
Yu X, Song SK, Chen J et al (2000) High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent. Magn Reson Med 44:867–872
CAS
Article
PubMed
Google Scholar
Flacke S, Fischer S, Scott MJ et al (2001) Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 104:1280–1285
CAS
Article
PubMed
Google Scholar
Sirol M, Aguinaldo JG, Graham PB et al (2005) Fibrin-targeted contrast agent for improvement of in vivo acute thrombus detection with magnetic resonance imaging. Atherosclerosis 182:79–85
CAS
Article
PubMed
Google Scholar
Ciesienski KL, Yang Y, Ay I et al (2013) Fibrin-targeted PET probes for the detection of thrombi. Mol Pharm 10:1100–1110
PubMed Central
CAS
Article
PubMed
Google Scholar
Starmans LW, van Duijnhoven SM, Rossin R et al (2013) SPECT imaging of fibrin using fibrin-binding peptides. Contrast Media Mol Imaging 8:229–237
CAS
Article
PubMed
Google Scholar
Starmans LW, van Duijnhoven SM, Rossin R et al (2013) Evaluation of 111In-labelled EPep and FibPep as tracers for fibrin PECT imaging. Mol Pharm 10:4309–4321
CAS
Article
PubMed
Google Scholar
Jaffer FA, Tung CH, Wykrzykowska JJ et al (2004) Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi. Circulation 110:170–176
CAS
Article
PubMed
Google Scholar
Hara T, Bhayana B, Thompson B et al (2012) Molecular imaging of fibrin deposition in deep vein thrombosis using fibrin-targeted near-infrared fluorescence. JACC Cardiovasc Imaging 5:607–615
PubMed Central
Article
PubMed
Google Scholar
Botnar RM, Perez AS, Witte S et al (2004) In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent. Circulation 109:2023–2029
PubMed Central
CAS
Article
PubMed
Google Scholar
Sirol M, Fuster V, Badimon JJ et al (2005) Chronic thrombus detection with in vivo magnetic resonance imaging and a fibrin-targeted contrast agent. Circulation 112:1594–1600
Article
PubMed
Google Scholar
Spuentrup E, Buecker A, Katoh M et al (2005) Molecular magnetic resonance imaging of coronary thrombosis and pulmonary emboli with a novel fibrin-targeted contrast agent. Circulation 111:1377–1382
CAS
Article
PubMed
Google Scholar
Stracke CP, Katoh M, Wiethoff AJ et al (2007) Molecular MRI of cerebral venous sinus thrombosis using a new fibrin-specific MR contrast agent. Stroke 38:1476–1481
CAS
Article
PubMed
Google Scholar
Overoye-Chan K, Koerner S, Looby RJ et al (2008) EP-2104R: a fibrin-specific gadolinium-Based MRI contrast agent for detection of thrombus. J Am Chem Soc 130:6025–6039
CAS
Article
PubMed
Google Scholar
Uppal R, Ay I, Dai G et al (2010) Molecular MRI of intracranial thrombus in a rat ischemic stroke model. Stroke 41:1271–1277
PubMed Central
Article
PubMed
Google Scholar
Spuentrup E, Botnar RM, Wiethoff AJ et al (2008) MR imaging of thrombi using EP-2104R, a fibrin-specific contrast agent: initial results in patients. Eur Radiol 18:1995–2005
Article
PubMed
Google Scholar
Vymazal J, Spuentrup E, Cardenas-Molina G et al (2009) Thrombus imaging with fibrin-specific gadolinium-based MR contrast agent EP-2104R: results of a phase II clinical study of feasibility. Investig Radiol 44:697–704
CAS
Article
Google Scholar
Morelli JN, Runge VM, Williams JM et al (2011) Evaluation of a fibrin-binding gadolinium chelate peptide tetramer in a brain glioma model. Investig Radiol 46:169–177
CAS
Article
Google Scholar
Tan M, Burden-Gulley SM, Li W et al (2012) MR molecular imaging of prostate cancer with a peptide-targeted contrast agent in a mouse orthotopic prostate cancer model. Pharm Res 29:953–960
PubMed Central
CAS
Article
PubMed
Google Scholar
Uppal R, Medarova Z, Farrar CT et al (2012) Molecular imaging of fibrin in a breast cancer xenograft mouse model. Investig Radiol 47:553–558
CAS
Article
Google Scholar
Chow AM, Tan M, Gao DS et al (2013) Molecular MRI of liver fibrosis by a peptide-targeted contrast agent in an experimental mouse model. Investig Radiol 48:46–54
CAS
Article
Google Scholar
Villaraza AJ, Bumb A, Brechbiel MW (2010) Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev 110:2921–2959
PubMed Central
CAS
Article
PubMed
Google Scholar
Botta M, Tei L (2012) Relaxivity enhancement in macromolecular and nanosized GdIII-based MRI Contrast Agents. Eur J Inorg Chem. 1945–1960
Wescott CR, Beltzer JP, Sato AK, Dyax Corp (2002) Fibrin binding moieties useful as imaging agents. Patent WO 02/055544 A2
Anelli PL, Fedeli F, Gazzotti O et al (1999) L-Glutamic acid and L-lysine as useful building blocks for the preparation of bifunctional DTPA-like ligands. Bioconjug Chem 10:137–140
CAS
Article
PubMed
Google Scholar
Lattuada L, Barge A, Cravotto G et al (2011) The synthesis and application of polyamino polycarboxylic bifunctional chelating agents. Chem Soc Rev 40:3019–3049
CAS
Article
PubMed
Google Scholar
Barge A, Cravotto G, Gianolio E et al (2006) How to determine free Gd and free ligand in solution of Gd chelates. A technical note. Contrast Media Mol Imaging 1:184–188
Article
PubMed
Google Scholar
Moskowitz KA, Budzynski AZ (1994) The (DD)E complex is maintained by a composite fibrin polymerization site. Biochemistry 33:12937–12944
CAS
Article
PubMed
Google Scholar
Tymkewycz PM, Creighton-Kempsford LJ, Hockley D et al (1992) Screening for fibrin specific monoclonal antibodies: the development of a new procedure. Thromb Haemost 68:48–53
CAS
PubMed
Google Scholar
Yilmaz A, Ulaka FS, Batun MS (2004) Proton T1 and T2 relaxivities of serum proteins. Magn Reson Imaging 22:683–688
CAS
Article
PubMed
Google Scholar
Giesel FL, von Tengg-Kobligk H, Wilkinson ID et al (2006) Influence of human serum albumin on longitudinal and transverse relaxation rates (R
1 and R
2) of magnetic resonance contrast agents. Investig Radiol 41:222–228
CAS
Article
Google Scholar
Bogdanov A Jr, Mazzanti ML (2011) Molecular magnetic resonance contrast agents for the detection of cancer: past and present. Semin Oncol 38:42–54
PubMed Central
CAS
Article
PubMed
Google Scholar
Nair SA, Kolodziej AF, Bhole G et al (2008) Monovalent and bivalent fibrin-specific MRI contrast agents for detection of thrombus. Angew Chem Int Ed Engl 47:4918–4921
CAS
Article
PubMed
Google Scholar
Borsig L (2010) Antimetastatic activities of heparins and modified heparins. Experimental evidence. Thromb Res 125(Suppl 2):S66–S71
Article
PubMed
Google Scholar
Tei L, Aime S, Uggeri F et al (2008) Accurate delineation of prostate cancer region by fibrin targeting MRI agents in TRAMP mouse model, World Molecular Imaging Congress, Nice, France
Tei L, Mazooz G, Shellef Y et al (2010) Novel MRI and fluorescent probes responsive to the Factor XIII transglutaminase activity. Contrast Media Mol Imaging 5:213–222
CAS
Article
PubMed
Google Scholar