Skip to main content

Advertisement

Log in

Noninvasive Detection of Macrophages in Atheroma Using a Radiocontrast-Loaded Phosphatidylserine-Containing Liposomal Contrast Agent for Computed Tomography

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Macrophage plays an important role in plaque destabilization in atherosclerosis. By harnessing the affinity of macrophages to certain phospholipid species, a liposomal contrast agent containing phosphatidylserine (PS) and X-ray computed tomographic (CT) contrast agent was prepared and evaluated for CT imaging of plaque-associated macrophages in rabbit models of atherosclerosis.

Procedures

Liposomes containing PS and iodixanol were evaluated for their physicochemical characteristics, in vitro macrophage uptake, in vivo blood pool clearance, and organ distribution. Plaque enhancement in the aorta was imaged with CT in two atherosclerotic rabbit models.

Results

In vitro macrophage uptake of PS liposomes increased with increasing amount of PS in the liposomes. Overall clearance of PS liposomes was more rapid than control liposomes. Smaller PS liposomes (d = 112 ± 4 nm) were more effective than control liposomes of similar size or larger control and PS liposomes (d = 172 ± 17 nm) in enhancing aortic plaques in both rabbit models.

Conclusions

Proper liposomal surface modification and appropriate sizing are important determinant for CT-based molecular imaging of macrophages in atheroma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ross R (1999) Atherosclerosis is an inflammatory disease. Am Heart J 138:S419–S420

    Article  CAS  PubMed  Google Scholar 

  2. Shah PK, Falk E, Badimon JJ et al (1995) Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture. Circulation 92:1565–1569

    CAS  PubMed  Google Scholar 

  3. Leuschner F, Nahrendorf M (2011) Molecular imaging of coronary atherosclerosis and myocardial infarction: considerations for the bench and perspectives for the clinic. Circ Res 108:593–606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hyafil F, Cornily JC, Feig JE et al (2007) Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med 13:636–641

    Article  CAS  PubMed  Google Scholar 

  5. Hyafil F, Cornily JC, Rudd JH et al (2009) Quantification of inflammation within rabbit atherosclerotic plaques using the macrophage-specific CT contrast agent N1177: a comparison with 18F-FDG PET/CT and histology. J Nucl Med 50:959–965

    Article  CAS  PubMed  Google Scholar 

  6. Van Herck JL, De Meyer GR, Martinet W et al (2010) Multi-slice computed tomography with N1177 identifies ruptured atherosclerotic plaques in rabbits. Basic Res Cardiol 105:51–59

    Article  PubMed  Google Scholar 

  7. Bhavane R, Badea C, Ghaghada KB et al (2013) Dual-energy computed tomography imaging of atherosclerotic plaques in a mouse model using a liposomal-iodine nanoparticle contrast agent. Circ Cardiovasc Imaging 6:285–294

    Article  PubMed Central  PubMed  Google Scholar 

  8. Elrod DB, Partha R, Danila D et al (2009) An iodinated liposomal computed tomographic contrast agent prepared from a diiodophosphatidylcholine lipid. Nanomedicine 5:42–45

    Article  CAS  PubMed  Google Scholar 

  9. Fadok VA, Bratton DL, Rose DM et al (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405:85–90

    Article  CAS  PubMed  Google Scholar 

  10. Krahling S, Callahan MK, Williamson P, Schlegel RA (1999) Exposure of phosphatidylserine is a general feature in the phagocytosis of apoptotic lymphocytes by macrophages. Cell Death Differ 6:183–189

    Article  CAS  PubMed  Google Scholar 

  11. Klibanov AL, Maruyama K, Beckerleg AM et al (1991) Activity of amphipathic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target. Biochim Biophys Acta 1062:142–148

    Article  CAS  PubMed  Google Scholar 

  12. Chiu GN, Bally MB, Mayer LD (2001) Selective protein interactions with phosphatidylserine containing liposomes alter the steric stabilization properties of poly(ethylene glycol). Biochim Biophys Acta 1510:56–69

    Article  CAS  PubMed  Google Scholar 

  13. Geelen T, Yeo SY, Paulis LE et al (2012) Internalization of paramagnetic phosphatidylserine-containing liposomes by macrophages. J Nanobiotechnol 10:37

    Article  CAS  Google Scholar 

  14. Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145:341–355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Van Vre EA, Ait-Oufella H, Tedgui A, Mallat Z (2012) Apoptotic cell death and efferocytosis in atherosclerosis. Arterioscler Thromb Vasc Biol 32:887–893

    Article  PubMed  Google Scholar 

  16. Saitoh S, Saito T, Ohwada T et al (1998) Morphological and functional changes in coronary vessel evoked by repeated endothelial injury in pigs. Cardiovasc Res 38:772–781

    Article  CAS  PubMed  Google Scholar 

  17. van Bochove GS, Paulis LE, Segers D et al (2011) Contrast enhancement by differently sized paramagnetic MRI contrast agents in mice with two phenotypes of atherosclerotic plaque. Contrast Media Mol Imaging 6:35–45

    Article  PubMed  Google Scholar 

  18. Mulder WJ, Douma K, Koning GA et al (2006) Liposome-enhanced MRI of neointimal lesions in the ApoE-KO mouse. Magn Reson Med 55:1170–1174

    Article  PubMed  Google Scholar 

  19. Maiseyeu A, Mihai G, Kampfrath T et al (2009) Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis. J Lipid Res 50:2157–2163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Ogawa M, Umeda IO, Kosugi M et al (2014) Development of 111In-labeled liposomes for vulnerable atherosclerotic plaque imaging. J Nucl Med 55:115–120

    Article  CAS  PubMed  Google Scholar 

  21. Ruehm SG, Corot C, Vogt P et al (2001) Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103:415–422

    Article  CAS  PubMed  Google Scholar 

  22. Schmitz SA, Coupland SE, Gust R et al (2000) Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest Radiol 35:460–471

    Article  CAS  PubMed  Google Scholar 

  23. Schmitz SA, Taupitz M, Wagner S et al (2002) Iron-oxide-enhanced magnetic resonance imaging of atherosclerotic plaques: postmortem analysis of accuracy, inter-observer agreement, and pitfalls. Invest Radiol 37:405–411

    Article  CAS  PubMed  Google Scholar 

  24. Cormode DP, Roessl E, Thran A et al (2010) Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology 256:774–782

    Article  PubMed Central  PubMed  Google Scholar 

  25. Awasthi VD, Garcia D, Goins BA, Phillips WT (2003) Circulation and biodistribution profiles of long-circulating PEG-liposomes of various sizes in rabbits. Int J Pharm 253:121–132

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the generous grant support of the National Institute of Health (Grant number R21HL112094).

Conflict of Interest

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Kee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kee, P., Bagalkot, V., Johnson, E. et al. Noninvasive Detection of Macrophages in Atheroma Using a Radiocontrast-Loaded Phosphatidylserine-Containing Liposomal Contrast Agent for Computed Tomography. Mol Imaging Biol 17, 328–336 (2015). https://doi.org/10.1007/s11307-014-0798-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0798-0

Key words

Navigation