Skip to main content
Log in

Comparison of HRRT and HR+ Scanners for Quantitative (R)-[11C]verapamil, [11C]raclopride and [11C]flumazenil Brain Studies

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

This study was conducted to directly compare the high-resolution research tomograph (HRRT) (high-resolution brain) and HR+ (standard whole-body) positron emission tomography (PET) only scanners for quantitative brain studies using three tracers with vastly different tracer distributions.

Procedures

Healthy volunteers underwent successive scans on HR+ and HRRT scanners (in random order) using either (R)-[11C]verapamil (n = 6), [11C]raclopride (n = 7) or [11C]flumazenil (n = 7). For all tracers, metabolite-corrected plasma-input functions were generated.

Results

After resolution matching, HRRT-derived kinetic parameter values correlated well with those of HR+ for all tracers (intraclass correlation coefficients ≥0.78), having a good absolute interscanner test-retest variability (≤15 %). However, systematic differences can be seen for HRRT-derived kinetic parameter values (range −13 to +15 %).

Conclusion

Quantification of kinetic parameters based on plasma-input models leads to comparable results when spatial resolution between HRRT and HR+ data is matched. When using reference-tissue models, differences remain that are likely caused by differences in attenuation and scatter corrections and/or image reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. de Jong HW, van Velden FH, Kloet RW et al (2007) Performance evaluation of the ECAT HRRT: an LSO-LYSO double layer high resolution, high sensitivity scanner. Phys Med Biol 52:1505–1526

    Article  PubMed  Google Scholar 

  2. Alakurtti K, Aalto S, Johansson JJ et al (2011) Reproducibility of striatal and thalamic dopamine D2 receptor binding using [11C]raclopride with high-resolution positron emission tomography. J Cereb Blood Flow Metab 31:155–165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Heiss WD, Habedank B, Klein JC et al (2004) Metabolic rates in small brain nuclei determined by high-resolution PET. J Nucl Med 45:1811–1815

    PubMed  Google Scholar 

  4. Leroy C, Comtat C, Trebossen R et al (2007) Assessment of 11C-PE2I binding to the neuronal dopamine transporter in humans with the high-spatial-resolution PET scanner HRRT. J Nucl Med 48:538–546

    Article  CAS  PubMed  Google Scholar 

  5. van Velden FH, Kloet RW, van Berckel BN et al (2009) HRRT versus HR+ human brain PET studies: an interscanner test-retest study. J Nucl Med 50:693–702

    Article  PubMed  Google Scholar 

  6. Brix G, Zaers J, Adam LE et al (1997) Performance evaluation of a whole-body PET scanner using the NEMA protocol. National Electrical Manufacturers Association. J Nucl Med 38:1614–1623

    CAS  PubMed  Google Scholar 

  7. Adam LE, Zaers J, Ostertag H et al (1997) Performance evaluation of the whole-body PET scanner ECAT EXACT HR+ following the IEC standard. IEEE Trans Nucl Sci 44:1172–1179

    Article  Google Scholar 

  8. van Velden FHP, Kloet RW, de Jong HWAM et al (2006) Quantitative experimental comparison of HRRT versus HR+ PET brain studies. IEEE Nuclear Science Symposium Conference Record (NSS/MIC) 5: 3097–3099

  9. van Velden FH, Kloet RW, van Berckel BN et al (2009) Accuracy of 3-dimensional reconstruction algorithms for the high-resolution research tomograph. J Nucl Med 50:72–80

    Article  PubMed  Google Scholar 

  10. van Velden FH, Kloet RW, van Berckel BN et al (2008) Impact of attenuation correction strategies on the quantification of high resolution research tomograph PET studies. Phys Med Biol 53:99–118

    Article  PubMed  Google Scholar 

  11. Son YD, Kim HK, Kim ST et al (2010) Analysis of biased PET images caused by inaccurate attenuation coefficients. J Nucl Med 51:753–760

    Article  PubMed  Google Scholar 

  12. Sibomana M, Keller SH, Stute S, Comtat C (2012) Benefits of 3D scatter correction for the HRRT—a large axial FOV PET scanner. IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) 2954–2957

  13. Keller SH, Svarer C, Sibomana M (2013) Attenuation correction for the HRRT PET-scanner using transmission scatter correction and total variation regularization. IEEE Trans Med Imaging 32:1611–1621

    Article  PubMed  Google Scholar 

  14. Walker MD, Asselin MC, Julyan PJ et al (2011) Bias in iterative reconstruction of low-statistics PET data: benefits of a resolution model. Phys Med Biol 56:931–949

    Article  CAS  PubMed  Google Scholar 

  15. Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20:423–451

    Article  CAS  PubMed  Google Scholar 

  16. Boellaard R, van Lingen A, Lammertsma AA (2001) Experimental and clinical evaluation of iterative reconstruction (OSEM) in dynamic PET: quantitative characteristics and effects on kinetic modeling. J Nucl Med 42:808–817

    CAS  PubMed  Google Scholar 

  17. Boellaard R, van Lingen A, van Balen SC et al (2001) Characteristics of a new fully programmable blood sampling device for monitoring blood radioactivity during PET. Eur J Nucl Med 28:81–89

    Article  CAS  PubMed  Google Scholar 

  18. Sureau FC, Reader AJ, Comtat C et al (2008) Impact of image-space resolution modeling for studies with the high-resolution research tomograph. J Nucl Med 49:1000–1008

    Article  PubMed  Google Scholar 

  19. Olesen OV, Sibomana M, Keller SH et al (2009) Spatial resolution of the HRRT PET scanner using 3D-OSEM PSF reconstruction. IEEE Nuclear Science Symposium Conference Record (NSS/MIC) 3789–3790

  20. Anton-Rodriguez JM, Sibomana M, Walker MD et al (2010) Investigation of motion induced errors in scatter correction for the HRRT brain scanner. IEEE Nuclear Science Symposium Conference Record (NSS/MIC) 2010: 2935–2940

  21. Cizek J, Herholz K, Vollmar S et al (2004) Fast and robust registration of PET and MR images of human brain. Neuroimage 22:434–442

    Article  PubMed  Google Scholar 

  22. van Assema DM, Lubberink M, Boellaard R et al (2012) Reproducibility of quantitative (R)-[11C]verapamil studies. EJNMMI Res 2:1

    Article  PubMed Central  PubMed  Google Scholar 

  23. Schuit RC, Luurtsema G, Greuter HN et al (2007) Intravenous amphetamine administration does not affect metabolism of [11C]raclopride. J Label Compd Radiopharm 50:S471

    Article  Google Scholar 

  24. Liefaard LC, Ploeger BA, Molthoff CF et al (2009) Changes in GABAA receptor properties in amygdala kindled animals: in vivo studies using [11C]flumazenil and positron emission tomography. Epilepsia 50:88–98

    Article  CAS  PubMed  Google Scholar 

  25. Svarer C, Madsen K, Hasselbalch SG et al (2005) MR-based automatic delineation of volumes of interest in human brain PET images using probability maps. Neuroimage 24:969–979

    Article  PubMed  Google Scholar 

  26. Hammers A, Koepp MJ, Free SL et al (2002) Implementation and application of a brain template for multiple volumes of interest. Hum Brain Mapp 15:165–174

    Article  PubMed  Google Scholar 

  27. Lubberink M, Luurtsema G, van Berckel BN et al (2007) Evaluation of tracer kinetic models for quantification of P-glycoprotein function using (R)-[11C]verapamil and PET. J Cereb Blood Flow Metab 27:424–433

    Article  CAS  PubMed  Google Scholar 

  28. Klumpers UM, Veltman DJ, Boellaard R et al (2008) Comparison of plasma input and reference tissue models for analysing [(11)C]flumazenil studies. J Cereb Blood Flow Metab 28:579–587

    Article  CAS  PubMed  Google Scholar 

  29. Lammertsma AA, Bench CJ, Hume SP et al (1996) Comparison of methods for analysis of clinical [11C]raclopride studies. J Cereb Blood Flow Metab 16:42–52

    Article  CAS  PubMed  Google Scholar 

  30. Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4:153–158

    Article  CAS  PubMed  Google Scholar 

  31. Innis RB, Cunningham VJ, Delforge J et al (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539

    Article  CAS  PubMed  Google Scholar 

  32. Chow TW, Mamo DC, Uchida H et al (2009) Test-retest variability of high resolution positron emission tomography (PET) imaging of cortical serotonin (5HT2A) receptors in older, healthy adults. BMC Med Imaging 9:12

    Article  PubMed Central  PubMed  Google Scholar 

  33. Leroy C, Karila L, Martinot JL et al (2012) Striatal and extrastriatal dopamine transporter in cannabis and tobacco addiction: a high-resolution PET study. Addict Biol 17:981–990

    Article  CAS  PubMed  Google Scholar 

  34. Madsen K, Hasselbalch BJ, Frederiksen KS et al (2012) Lack of association between prior depressive episodes and cerebral [(11)C]PiB binding. Neurobiol Aging 33:2334–2342

    Article  CAS  PubMed  Google Scholar 

  35. Varrone A, Sjoholm N, Eriksson L et al (2009) Advancement in PET quantification using 3D-OP-OSEM point spread function reconstruction with the HRRT. Eur J Nucl Med Mol Imaging 36:1639–1650

    Article  PubMed  Google Scholar 

  36. Mourik JE, Lubberink M, van Velden FH et al (2010) In vivo validation of reconstruction-based resolution recovery for human brain studies. J Cereb Blood Flow Metab 30:381–389

    Article  PubMed Central  PubMed  Google Scholar 

  37. Kloet RW, de Jong HW, van Velden FH et al (2006) Influence of outside field of view activity on the quality of high resolution research tomograph (HRRT) brain studies. IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) 3369–3371

  38. Verhaeghe J, Reader AJ (2010) AB-OSEM reconstruction for improved Patlak kinetic parameter estimation: a simulation study. Phys Med Biol 55:6739–6757

    Article  PubMed  Google Scholar 

  39. Nuyts J, Stroobants S, Dupont P et al (2002) Reducing loss of image quality because of the attenuation artifact in uncorrected PET whole-body images. J Nucl Med 43:1054–1062

    PubMed  Google Scholar 

  40. Polycarpou I, Thielemans K, Manjeshwar R et al (2011) Comparative evaluation of scatter correction in 3D PET using different scatter-level approximations. Ann Nucl Med 25:643–649

    Article  PubMed  Google Scholar 

  41. van Velden FH, Kloet RW, van Berckel BN et al (2008) Comparison of 3D-OP-OSEM and 3D-FBP reconstruction algorithms for high-resolution research tomograph studies: effects of randoms estimation methods. Phys Med Biol 53:3217–3230

    Article  PubMed  Google Scholar 

  42. Andersen FL, Ladefoged CN, Beyer T et al (2014) Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone. Neuroimage 84:206–216

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the EU seventh framework programme EURIPIDES (FP7/2007-2013 under grant agreement no. 201380) and the Netherlands Organization for Scientific Research (NWO), VIDI grant 016.066.309. The authors would like to thank N.J. Hoetjes, R.W. Kloet, M. Lubberink, G. Luurtsema, J.E.M. Mourik, N. Tolboom and S.P.A. Wolfensberger for their assistance in data analysis and/or acquiring subject data and M. Sibomana and the HRRT users community for the HRRT software development.

Conflict of Interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Floris H. P. van Velden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Velden, F.H.P., Mansor, S.M., van Assema, D.M.E. et al. Comparison of HRRT and HR+ Scanners for Quantitative (R)-[11C]verapamil, [11C]raclopride and [11C]flumazenil Brain Studies. Mol Imaging Biol 17, 129–139 (2015). https://doi.org/10.1007/s11307-014-0766-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0766-8

Key words

Navigation