Skip to main content
Log in

Imaging Integrin αvβ3 and NRP-1 Positive Gliomas with a Novel Fluorine-18 Labeled RGD-ATWLPPR Heterodimeric Peptide Probe

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Radiolabeled Arg-Gly-Asp (RGD) and Ala-Thr-Trp-Leu-Pro-Pro-Arg (ATWLPPR) peptide analogs have received interests for their capability to serve as radiopharmaceuticals for imaging integrin αvβ3 and Neuropilin-1 (NRP-1) positive tumors, respectively. In this study, we developed a RGD-ATWLPPR heterodimeric peptide which contained both RGD and ATWLPPR motifs in one molecular probe. The aim of this study was to investigate the dual receptor-targeting property and tumor diagnostic value of RGD-ATWLPPR heterodimeric peptide labeled with fluorine-18 (F-18).

Procedures

A RGD-ATWLPPR heterodimer was synthesized from c(RGDyK) and ATWLPPR through a glutamate linker. The peptide was radiolabeled by reacting the [18F]fluoride–aluminum complex with the cyclic chelator, 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). The receptor-binding characteristics and tumor-targeting efficacy of [18F]FAl-NOTA-RGD-ATWLPPR were tested in vitro and in vivo.

Results

RGD-ATWLPPR had affinity for both integrin αvβ3 and NRP-1 in vitro. [18F]FAl-NOTA-RGD-ATWLPPR displayed significantly higher tumor uptake than [18F]FAl-NOTA-RGD and [18F]FAl-NOTA-ATWLPPR, both in vitro and in vivo. The uptake of the F-18 labeled heterodimer by an U87MG tumor was inhibited only partially in the presence of an excess amount of unlabeled RGD or ATWLPPR but was blocked completely in the presence of both RGD and ATWLPPR. Compared with the monomeric RGD and ATWLPPR peptides, [18F]FAl-NOTA-RGD-ATWLPPR showed improved in vivo pharmacokinetics, resulting in a more preferable imaging quality.

Conclusions

[18F]FAl-NOTA-RGD-ATWLPPR exhibited significantly improved receptor-targeting properties both in vitro and in vivo compared with the F-18 labeled RGD or ATWLPPR monomers. The improved targeting and localization exhibited by the RGD-ATWLPPR heterodimer provide a foundation for further investigations of its applicability in clinical tumor imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Jemal A, Tiwari RC, Murray T et al (2004) Cancer statistics, 2004. CA Cancer J Clin 54:8–29

    Article  PubMed  Google Scholar 

  2. Ohgaki H, Kleihues P (2005) Epidemiology and etiology of gliomas. Acta Neuropathol 109:93–108

    Article  PubMed  Google Scholar 

  3. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–18

    Article  CAS  PubMed  Google Scholar 

  4. Tammela T, Enholm B, Alitalo K, Paavonen K (2005) The biology of vascular endothelial growth factors. Cardiovasc Res 65:550–563

    Article  CAS  PubMed  Google Scholar 

  5. Carpini JD, Karam AK, Montgomery L (2010) Vascular endothelial growth factor and its relationship to the prognosis and treatment of breast, ovarian, and cervical cancer. Angiogenesis 13:43–58

    Article  CAS  PubMed  Google Scholar 

  6. Jubb AM, Strickland LA, Liu SD et al (2012) Neuropilin-1 expression in cancer and development. J Pathol 226:50–60

    Article  CAS  PubMed  Google Scholar 

  7. Binetruy-Tournaire R, Demangel C, Malavaud B et al (2000) Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis. EMBO J 19:1525–1533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Starzec A, Ladam P, Vassy R et al (2007) Structure-function analysis of the antiangiogenic ATWLPPR peptide inhibiting VEGF(165) binding to neuropilin-1 and molecular dynamics simulations of the ATWLPPR/neuropilin-1 complex. Peptides 28:2397–2402

    Article  CAS  PubMed  Google Scholar 

  9. Perret GY, Starzec A, Hauet N et al (2004) In vitro evaluation and biodistribution of a 99mTc-labeled anti-VEGF peptide targeting neuropilin-1. Nucl Med Biol 31:575–581

    Article  CAS  PubMed  Google Scholar 

  10. X-l L, Z-r G, Sun L (2008) An experimental study on radionuclide imaging with radiolabeled blood vessel polypeptide in diagnosis for malignant tumor. J Oncol 8:007

    Google Scholar 

  11. Scott PJ, Shao X (2010) Fully automated, high yielding production of N-succinimidyl 4-[18F] fluorobenzoate ([18F] SFB), and its use in microwave-enhanced radiochemical coupling reactions. J Label Compd Radiopharm 53:586–591

    Article  CAS  Google Scholar 

  12. Eliceiri BP, Cheresh DA (2000) Role of alpha v integrins during angiogenesis. Cancer J 6(Suppl 3):S245–S249

    PubMed  Google Scholar 

  13. Zitzmann S, Ehemann V, Schwab M (2002) Arginine-glycine-aspartic acid (RGD)-peptide binds to both tumor and tumor-endothelial cells in vivo. Cancer Res 62:5139–5143

    CAS  PubMed  Google Scholar 

  14. Meitar D, Crawford SE, Rademaker AW, Cohn SL (1996) Tumor angiogenesis correlates with metastatic disease, N-myc amplification, and poor outcome in human neuroblastoma. J Clin Oncol 14:405–414

    CAS  PubMed  Google Scholar 

  15. Dijkgraaf I, Yim C-B, Franssen GM et al (2011) PET imaging of αvβ3 integrin expression in tumours with 68Ga-labelled mono-, di-and tetrameric RGD peptides. Eur J Nucl Med Mol Imaging 38:128–137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Jia B, Liu Z, Zhu Z et al (2011) Blood clearance kinetics, biodistribution, and radiation dosimetry of a kit-formulated integrin alphavbeta3-selective radiotracer 99mTc-3PRGD 2 in non-human primates. Mol Imaging Biol 13:730–736

    Article  PubMed  Google Scholar 

  17. Battle MR, Goggi JL, Allen L et al (2011) Monitoring tumor response to antiangiogenic sunitinib therapy with 18F-fluciclatide, an 18F-labeled αVβ3-integrin and αVβ5-integrin imaging agent. J Nucl Med 52:424–430

    Article  CAS  PubMed  Google Scholar 

  18. Beer AJ, Schwaiger M (2011) PET of αvβ3-Integrin and αvβ5-Integrin expression with 18F-Fluciclatide for assessment of response to targeted therapy: ready for prime time? J Nucl Med 52:335–337

    Article  CAS  PubMed  Google Scholar 

  19. Zhu Z, Miao W, Li Q et al (2012) 99mTc-3PRGD2 for integrin receptor imaging of lung cancer: a multicenter study. J Nucl Med 53:716–722

    Article  PubMed  Google Scholar 

  20. Lang L, Li W, Guo N et al (2011) Comparison study of [18F]FAl-NOTA-PRGD2, [18F]FPPRGD2, and [68Ga]Ga-NOTA-PRGD2 for PET imaging of U87MG tumors in mice. Bioconjug Chem 22:2415–2422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Liu S, Liu Z, Chen K et al (2010) 18F-labeled galacto and PEGylated RGD dimers for PET imaging of alphavbeta3 integrin expression. Mol Imaging Biol 12:530–538

    Article  PubMed Central  PubMed  Google Scholar 

  22. Chin FT, Shen B, Liu S et al (2012) First experience with clinical-grade ([(1)(8)F]FPP(RGD(2)): an automated multi-step radiosynthesis for clinical PET studies. Mol Imaging Biol 14:88–95

    Article  PubMed Central  PubMed  Google Scholar 

  23. Wu H, Chen H, Sun Y et al (2013) Imaging integrin alpha(v)beta(3) positive glioma with a novel RGD dimer probe and the impact of antiangiogenic agent (Endostar) on its tumor uptake. Cancer Lett 335:75–80

    Article  CAS  PubMed  Google Scholar 

  24. Chen L, Miao W, Tang X et al (2013) The expression and significance of Neuropilin-1 (NRP-1) on glioma cell lines and glioma tissues. J Biomed Nanotechnol 9:559–563

    Article  CAS  PubMed  Google Scholar 

  25. Chen L, Miao W, Tang X et al (2013) Inhibitory effect of neuropilin-1 monoclonal antibody (NRP-1 MAb) on glioma tumor in mice. J Biomed Nanotechnol 9:551–558

    Article  CAS  PubMed  Google Scholar 

  26. Gao H, Lang L, Guo N et al (2012) PET imaging of angiogenesis after myocardial infarction/reperfusion using a one-step labeled integrin-targeted tracer 18F-AlF-NOTA-PRGD2. Eur J Nucl Med Mol Imaging 39:683–692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Capello A, Krenning EP, Bernard BF et al (2006) Anticancer activity of targeted proapoptotic peptides. J Nucl Med 47:122–129

    CAS  PubMed  Google Scholar 

  28. Liu Z, Yan Y, Chin FT et al (2009) Dual integrin and gastrin-releasing peptide receptor targeted tumor imaging using 18F-labeled PEGylated RGD-bombesin heterodimer 18F-FB-PEG3-Glu-RGD-BBN. J Med Chem 52:425–432

    Article  CAS  PubMed  Google Scholar 

  29. Liu S, Liu H, Jiang H et al (2011) One-step radiosynthesis of (1)(8)F-AlF-NOTA-RGD(2) for tumor angiogenesis PET imaging. Eur J Nucl Med Mol Imaging 38:1732–1741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Yan Y, Chen K, Yang M et al (2011) A new 18F-labeled BBN-RGD peptide heterodimer with a symmetric linker for prostate cancer imaging. Amino Acids 41:439–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Yan Y, Chen X (2011) Peptide heterodimers for molecular imaging. Amino Acids 41:1081–1092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Liu Z, Huang J, Dong C et al (2012) 99mTc-labeled RGD-BBN peptide for small-animal SPECT/CT of lung carcinoma. Mol Pharm 9:1409–1417

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grant no. 81101066 from National Nature Science Foundation of China.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Wu.

Additional information

Hua Wu and Haojun Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Chen, H., Pan, D. et al. Imaging Integrin αvβ3 and NRP-1 Positive Gliomas with a Novel Fluorine-18 Labeled RGD-ATWLPPR Heterodimeric Peptide Probe. Mol Imaging Biol 16, 781–792 (2014). https://doi.org/10.1007/s11307-014-0761-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-014-0761-0

Key words

Navigation