Advertisement

Molecular Imaging and Biology

, Volume 16, Issue 4, pp 538–549 | Cite as

Synthesis and Evaluation of 13N-Labelled Azo Compounds for β-Amyloid Imaging in Mice

  • Vijay Gaja
  • Vanessa Gómez-Vallejo
  • Maria Puigivila
  • Carlos Pérez-Campaña
  • Abraham Martin
  • Ana García-Osta
  • Teresa Calvo-Fernández
  • Mar Cuadrado-Tejedor
  • Rafael Franco
  • Jordi LlopEmail author
Research Article

Abstract

Purpose

The aim of the present study was to develop short half-lived tools for in vitro and in vivo β-amyloid imaging in mice, for which no suitable PET tracers are available.

Procedures

Five 13N-labelled azo compounds (15) were synthesized using a three-step process using cyclotron-produced [13N]NO3 . Biodistribution studies were performed using positron emission tomography–computed tomography (PET–CT) on 20-month-old healthy, wild-type (WT) mice. In vivo and in vitro binding assays were performed using PET-CT and autoradiography, respectively, on 20-month-old healthy (WT) mice and transgenic (Tg2576) Alzheimer's disease model mice.

Results

13N-labelled azo compounds were prepared with decay corrected radiochemical yields in the range 27 ± 4 % to 39 ± 4 %. Biodistribution studies showed good blood–brain barrier penetration for compounds 1 and 3–5; good clearance data were also obtained for compounds 1–3 and 5. Compounds 2, 3 and 5 (but not 1) showed a significant uptake in β-amyloid-rich structures when assayed in in vitro autoradiographic studies. PET studies showed significant uptake of compounds 2 and 3 in the cortex of transgenic animals that exhibit β-amyloid deposits.

Conclusions

The results underscore the potential of compounds 2 and 3 as in vitro and in vivo markers for β-amyloid in animal models of Alzheimer's disease.

Key words

Positron emission tomography Tg2576 Alzheimer's disease Nitrogen-13 β-Amyloid Animal biomarker 

Notes

Acknowledgments

This work was supported by EU grant PITN-GA-2012-316882 and by intramural FIMA (Fundación para la Investigación Médica Aplicada) funds. We acknowledge Dr. Juan Domingo Gispert for fruitful discussion about experimental design details.

Conflict of interest

None of the authors has any conflict of interest.

References

  1. 1.
    Selkoe DJ (2012) Preventing Alzheimer's disease. Science 337:1488–1492PubMedCrossRefGoogle Scholar
  2. 2.
    Sajid J, Elhaddaoui A, Turrell S (1997) Investigation of the binding of Congo red to amyloid in Alzheimer's diseased tissue. J Mol Struct 408–409:181–184CrossRefGoogle Scholar
  3. 3.
    Hardy JA, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: problems and progress on the road to therapeutics. Science 297:353–356PubMedCrossRefGoogle Scholar
  4. 4.
    Klunk WE, Engler H, Nordberg A et al (2004) Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol 55:306–319PubMedCrossRefGoogle Scholar
  5. 5.
    Vandenberghe R, Van Laere K, Ivanoiu A et al (2010) 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol 68:319–329PubMedCrossRefGoogle Scholar
  6. 6.
    Thurfjell L, Lötjönen J, Lundqvist R et al (2012) Combination of biomarkers: PET [18F]flutemetamol imaging and structural MRI in dementia and mild cognitive impairment. Neurodegener Dis 10:246–249PubMedCrossRefGoogle Scholar
  7. 7.
    Cselényi Z, Jönhagen ME, Forsberg A et al (2012) Clinical validation of 18F-AZD4694, an amyloid-β-specific PET radioligand. J Nucl Med 53:415–424PubMedCrossRefGoogle Scholar
  8. 8.
    Rowe CC, Ackerman U, Browne W et al (2008) Imaging of amyloid beta in Alzheimer's disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol 7:129–135PubMedCrossRefGoogle Scholar
  9. 9.
    Wong DF, Rosenberg PB, Zhou Y et al (2010) In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18-AV-45 (florbetapir [corrected] F 18). J Nucl Med 51:913–920PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Mathis CA, Mason NS, Lopresti BJ, Klunk WE (2012) Development of positron emission tomography β-amyloid plaque imaging agents. Semin Nucl Med 42:423–432PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Kepe V, Moghbel MC, Långström B et al (2013) Amyloid-β positron emission tomography imaging probes: a critical review. J Alzheimers Dis. doi: 10.3233/JAD-130485 Google Scholar
  12. 12.
    Montine TJ, Phelps CH, Beach TG et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Hyman BT, Phelps CH, Beach TG et al (2012) Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8:1–13PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Agdeppa ED, Kepe V, Liu J et al (2001) Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for beta-amyloid plaques in Alzheimer's disease. J Neurosci 21:RC189PubMedGoogle Scholar
  15. 15.
    Kuntner C, Kesner AL, Bauer M et al (2009) Limitations of small animal PET imaging with [18F]FDDNP and FDG for quantitative studies in a transgenic mouse model of Alzheimer’s disease. Mol Imaging Biol 11:236–240PubMedCrossRefGoogle Scholar
  16. 16.
    Toyama H, Ye D, Ichise M et al (2005) PET imaging of brain with the beta-amyloid probe, [11C]6-OH-BTA-1, in a transgenic mouse model of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 32:593–600PubMedCrossRefGoogle Scholar
  17. 17.
    Klunk WE, Lopresti BJ, Ikonomovic MD et al (2005) Binding of the positron emission tomography tracer Pittsburgh Compound-B reflects the amount of amyloid-β in Alzheimer’s disease brain but not in transgenic mouse brain. J Neurosci 25:10598–10606PubMedCrossRefGoogle Scholar
  18. 18.
    Higuchi M, Maeda J, Ji B et al (2010) In vivo visualization of key molecular processes involved in Alzheimer’s disease pathogenesis: insights from neuroimaging research in humans and rodent models. Biochim Biophys Acta 1802:373–388PubMedCrossRefGoogle Scholar
  19. 19.
    Maeda J, Ji B, Irie T et al (2007) Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer’s disease enabled by positron emission tomography. J Neurosci 27:10957–10968PubMedCrossRefGoogle Scholar
  20. 20.
    Poisnel G, Dhilly M, Moustié O et al (2012) PET imaging with [18F]AV-45 in an APP/PS1-21 murine model of amyloid plaque deposition. Neurobiol Aging 33:2561–2571PubMedCrossRefGoogle Scholar
  21. 21.
    Gómez-Vallejo V, Borrell JI, Llop J (2010) A convenient synthesis of 13N-labelled azo compounds: a new route for the preparation of amyloid imaging PET probes. Eur J Med Chem 45:5318–5323PubMedCrossRefGoogle Scholar
  22. 22.
    Gaja V, Gómez-Vallejo V, Cuadrado-Tejedor M et al (2012) Synthesis of 13N-labelled radiotracers by using microfluidic technology. J Labelled Comp Radiopharm 55:332–338CrossRefGoogle Scholar
  23. 23.
    Logan J, Fowler JS, Volkow ND et al (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16:834–840PubMedCrossRefGoogle Scholar
  24. 24.
    Reilly JF, Games D, Rydel RE et al (2003) Amyloid deposition in the hippocampus and entorhinal cortex: quantitative analysis of a transgenic mouse model. Proc Natl Acad Sci U S A 100:4837–4842PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Dickson DW, Farlo J, Davies P et al (1988) Alzheimer’s disease. A double-labelling immunohistochemical study of senile plaques. Am J Pathol 132:86–101PubMedCentralPubMedGoogle Scholar
  26. 26.
    Villemagne VL, Klunk WE, Mathis CA et al (2012) Aβ imaging: feasible, pertinent, and vital to progress in Alzheimer's disease. Eur J Nucl Med Mol Imaging 39:209–219PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Fodero-Tavoletti MT, Okamura N, Furumoto S et al (2011) 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer’s disease. Brain 134:1089–1100PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang W, Arteaga J, Cashion DK et al (2012) A highly selective and specific PET tracer for imaging of tau pathologies. J Alzheimers Dis 31:601–602PubMedGoogle Scholar
  29. 29.
    Xia C-F, Arteaga J, Chen G, et al. (2013) [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement, in press, Corrected Proof, doi:  10.1016/j.jalz.2012.11.008
  30. 30.
    Manook A, Yousefi BH, Willuweit A et al (2012) Small-Animal PET imaging of Amyloid-beta plaques with [11C]PIB and its multi-modal validation in an APP/PS1 mouse model of Alzheimer’s disease. PLoS ONE 7(3):e31310PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Dishino DD, Welch MJ, Kilbourn MR, Raichle ME (1983) Relationship between lipophilicity and brain extraction of C-11-labeled radiopharmaceuticals. J Nucl Med 24:1030–1038PubMedGoogle Scholar

Copyright information

© World Molecular Imaging Society 2013

Authors and Affiliations

  • Vijay Gaja
    • 1
  • Vanessa Gómez-Vallejo
    • 1
  • Maria Puigivila
    • 1
  • Carlos Pérez-Campaña
    • 1
  • Abraham Martin
    • 2
  • Ana García-Osta
    • 3
  • Teresa Calvo-Fernández
    • 4
  • Mar Cuadrado-Tejedor
    • 3
  • Rafael Franco
    • 3
    • 5
  • Jordi Llop
    • 1
    Email author
  1. 1.Radiochemistry Department, Molecular Imaging UnitCIC biomaGUNESan SebastianSpain
  2. 2.Molecular Imaging UnitCIC biomaGUNESan SebastianSpain
  3. 3.Division of Neuroscience, CIMAUniversity of NavarraPamplonaSpain
  4. 4.Animal Facility, Molecular Imaging UnitCIC biomaGUNESan SebastianSpain
  5. 5.Department of Biochemistry and Molecular BiologyUniversity of BarcelonaBarcelonaSpain

Personalised recommendations