Molecular Imaging and Biology

, Volume 16, Issue 2, pp 235–245 | Cite as

Comparison of 4D-MicroSPECT and MicroCT for Murine Cardiac Function

  • Nicholas T. Befera
  • Cristian T. Badea
  • G. Allan Johnson
Research Article



The objective of this study was to compare a new generation of four-dimensional micro-single photon emission computed tomography (microSPECT) with microCT for the quantitative in vivo assessment of murine cardiac function.


Four-dimensional isotropic cardiac images were acquired from anesthetized normal C57BL/6 mice with either microSPECT (n = 6) or microCT (n = 6). One additional mouse with myocardial infarction (MI) was scanned with both modalities. Prior to imaging, mice were injected with either technetium tetrofosmin for microSPECT or a liposomal blood pool contrast agent for microCT. Segmentation of the left ventricle (LV) was performed using Vitrea (Vital Images) software, to derive global and regional function.


Measures of global LV function between microSPECT and microCT groups were comparable (e.g., ejection fraction = 71 ± 6 % microSPECT and 68 ± 4 % microCT). Regional functional indices (wall motion, wall thickening, regional ejection fraction) were also similar for the two modalities. In the mouse with MI, microSPECT identified a large perfusion defect that was not evident with microCT.


Despite lower spatial resolution, microSPECT was comparable to microCT in the quantitative evaluation of cardiac function. MicroSPECT offers an advantage over microCT in the ability to evaluate simultaneously myocardial radiotracer distribution and function, simultaneously. MicroSPECT should be considered as an alternative to microCT and magnetic resonance for preclinical cardiac imaging in the mouse.

Key words

Murine cardiac functional imaging Molecular imaging MicroSPECT MicroCT Dynamic microSPECT Micro-CT Four-dimensional (4D) cardiac imaging 99mTc tetrofosmin Mice Cardiovascular imaging 


  1. 1.
    Abel ED, Litwin SE, Sweeney G (2008) Cardiac remodeling in obesity. Physiol Rev 88(2):389–419PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Breckenridge R (2010) Heart failure and mouse models. Dis Models Mech 3(3–4):138–143CrossRefGoogle Scholar
  3. 3.
    Bucholz E, Ghaghada K, Qi Y, Mukundan S et al (2010) Cardiovascular phenotyping of the mouse heart using a 4D radial acquisition and liposomal Gd-DTPA-BMA. Magn Reson Med 63(4):979–987PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Zaragoza C, Lavin B, Egido J et al (2011) Animal models of cardiovascular diseases. J Biomed Biotechnol 2011:497841PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Constantinides C (2013) Chapter 14: study of the murine cardiac mechanical function using magnetic resonance imaging: the current status, challenges, and future perspectives. In: Andrade A (ed) Practical applications in biomedical engineering. InTech Open Science Publications. ISBN: 978-953-51-0924-2Google Scholar
  6. 6.
    Perrino C, Gargiulo G, Pironti G et al (2011) Cardiovascular effects of treadmill exercise in physiological and pathological preclinical settings. Am J Physiol Heart Circ Physiol 300(6):1983–1989CrossRefGoogle Scholar
  7. 7.
    Badea CT, Bucholz E, Hedlund LW et al (2006) Imaging methods for morphological and functional phenotyping of the rodent heart. Toxicol Path 34(1):111–117CrossRefGoogle Scholar
  8. 8.
    Bucholz E, Ghaghada K, Qi Y, Mukundan S, Johnson GA (2008) Four-dimensional MR microscopy of the mouse heart using radial acquisition and liposomal gadolinium contrast agent. Magn Reson Med 60(1):111–118PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Dawson D, Lygate CA, Saunders J et al (2004) Quantitative 3-dimensional echocardiography for accurate and rapid cardiac phenotype characterization in mice. Circulation 110(2):1632–1637PubMedCrossRefGoogle Scholar
  10. 10.
    Schneider JE, Cassidy PJ, Lygate C et al (2003) Fast, high-resolution in vivo cine magnetic resonance imaging in normal and failing mouse hearts on a vertical 11.7 T system. J Magn Reson Imaging 18(6):691–701PubMedCrossRefGoogle Scholar
  11. 11.
    Stegger L, Schafers KP, Schafers MA et al (2009) Quantification of left ventricular volumes and ejection fraction in mice using PET, compared with MRI. J Nucl Med 50(1):132–138PubMedCrossRefGoogle Scholar
  12. 12.
    Wiesmann F, Ruff J, Hiller KH et al (2000) Developmental changes of cardiac function and mass assessed with MRI in neonatal, juvenile, and adult mice. Am J Physiol 278(2):H652–H657Google Scholar
  13. 13.
    Badea C, Hedlund LW, Johnson GA (2004) Micro-CT with respiratory and cardiac gating. Med Phys 31(12):3324–3329PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Badea CT, Fubara B, Hedlund LW, Johnson GA (2005) 4-D micro-CT of the mouse heart. Mol Imaging 4(2):110–116PubMedGoogle Scholar
  15. 15.
    Badea CT, Wetzel AW, Mistry N et al (2008) Left ventricle volume measurements in cardiac micro-CT: the impact of radiation dose and contrast agent. Comput Med Imaging Graph 32(3):239–250PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Bartling SH, Stiller W, Grasruck M et al (2007) Retrospective motion gating in small animal CT of mice and rats. Invest Radiol 42(10):704–714PubMedCrossRefGoogle Scholar
  17. 17.
    Drangova M, Ford NL, Detombe SA et al (2007) Fast retrospectively gated quantitative four-dimensional (4D) cardiac micro computed tomography imaging of free-breathing mice. Invest Radiol 42(2):85–94PubMedCrossRefGoogle Scholar
  18. 18.
    Chin BB, Metzler SD, Lemaire A et al (2007) Left ventricular functional assessment in mice: feasibility of high spatial and temporal resolution ECG-gated blood pool SPECT. Radiology 245(2):440–448PubMedCrossRefGoogle Scholar
  19. 19.
    Constantinesco A, Choquet P, Monassier L et al (2005) Assessment of left ventricular perfusion, volumes, and motion in mice using pinhole gated SPECT. J Nucl Med 46(6):1005–1011PubMedGoogle Scholar
  20. 20.
    Golestani R, Wu C, Tio RA et al (2010) Small-animal SPECT and SPECT/CT: application in cardiovascular research. Eur J Nucl Med Mol Imaging 37(9):1766–1777PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Lahoutte T (2007) Monitoring left ventricular function in small animals. J Nucl Cardiol 14(3):371–379PubMedCrossRefGoogle Scholar
  22. 22.
    Deleye S, Holen R, Verhaeghe J et al (2013) Performance evaluation of small-animal multipinhole SPECT scanners for mouse imaging. Eur J Nucl Med Mol Imaging 40(5):744–758PubMedCrossRefGoogle Scholar
  23. 23.
    Branderhorst W, Vastenhouw B, Beekman FJ (2010) Pixel-based subsets for rapid multi-pinhole SPECT reconstruction. Phys Med Biol 55(7):2023–2034PubMedCrossRefGoogle Scholar
  24. 24.
    Badea CT, Drangova M, Holdsworth DW, Johnson GA (2008) In vivo small-animal imaging using micro-CT and digital subtraction angiography. Phys Med Biol 53(19):R319–R350PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Badea CT, Johnston S, Johnson B et al (2008) A dual micro-CT system for small animal imaging. In: Hsieh J, Samei E (eds) Medical imaging 2008: physics of medical imaging. SPIE, Bellingham, Proceedings of SPIE (vol 6913, article CID no. 147)Google Scholar
  26. 26.
    Mukundan S Jr, Ghaghada KB, Badea CT et al (2006) A liposomal nanoscale contrast agent for preclinical CT in mice. AJR Am J of Roentgenol 186(2):300–307CrossRefGoogle Scholar
  27. 27.
    Johnston SM, Johnson GA, Badea CT (2012) Temporal and spectral imaging with micro-CT. Med Phys 39(8):4943–4958PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am 1(6):612–619CrossRefGoogle Scholar
  29. 29.
    Nahrendorf M, Badea C, Hedlund LW et al (2007) High-resolution imaging of murine myocardial infarction with delayed-enhancement cine micro-CT. Am J Physiol Heart Circ Physiol 292(6):H3172–H3178PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Stabin MG, Sparks RB, Crowe E (2005) OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46(6):1023–1027PubMedGoogle Scholar
  31. 31.
    De Lin M, Toncheva G, Nguyen G et al (2008) Application of MOSFET detectors for dosimetry in small animal radiography using short exposure times. Radiat Res 170(2):260–263PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Song X, Pogue BW, Jiang S et al (2004) Automated region detection based on the contrast-to-noise ratio in near-infrared tomography. Appl Opt 43(5):1053–1062PubMedCrossRefGoogle Scholar
  33. 33.
    Vital Images Inc. Vitrea® reference guide (VPMC-10119F).Google Scholar
  34. 34.
    Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4):539–542PubMedCrossRefGoogle Scholar
  35. 35.
    Ennis D (2007) Bullseye polar data plot. MATLAB Central file exchange. Accessed 12 Feb 2013
  36. 36.
    Funk T, Sun M, Hasegawa BH (2004) Radiation dose estimate in small animal SPECT and PET. Med Phys 31(9):2680–2686PubMedCrossRefGoogle Scholar
  37. 37.
    Taschereau R, Chow PL, Chatziioannou AF (2006) Monte Carlo simulations of dose from microCT imaging procedures in a realistic mouse phantom. Med Phys 33(1):216–224PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Feintuch A, Zhu Y, Bishop J et al (2007) 4D cardiac MRI in the mouse. NMR Biomed 20(3):360–365PubMedCrossRefGoogle Scholar
  39. 39.
    de Jonge GJ, van Ooijen PM, Overbosch J et al (2011) Comparison of (semi-)automatic and manually adjusted measurements of left ventricular function in dual source computed tomography using three different software tools. Int J Cardiovasc Imaging 27(6):787–794PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Ashton JR, Befera N, Clark D, et al. (2013) Anatomical and functional imaging of myocardial infarction in mice using micro-CT and eXIA 160 contrast agent. Contrast Media and Molecular Imaging. doi:10.1002/cmmi.1557
  41. 41.
    Peukert D, Laule M, Taupitz M et al (2007) 3D and 2D delayed-enhancement magnetic resonance imaging for detection of myocardial infarction: preclinical and clinical results. Acad Radiol 14(7):788–794PubMedCrossRefGoogle Scholar
  42. 42.
    Price AN, Cheung KK, Lim SY et al (2011) Rapid assessment of myocardial infarct size in rodents using multi-slice inversion recovery late gadolinium enhancement CMR at 9.4 T. J Cardiol Magn Reson 13:44CrossRefGoogle Scholar

Copyright information

© World Molecular Imaging Society 2013

Authors and Affiliations

  • Nicholas T. Befera
    • 1
  • Cristian T. Badea
    • 1
  • G. Allan Johnson
    • 1
  1. 1.Center for In Vivo Microscopy, Department of RadiologyDuke University Medical CenterDurhamUSA

Personalised recommendations