Skip to main content

Advertisement

Log in

Dual-Tracer PET Using Generalized Factor Analysis of Dynamic Sequences

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

With single-photon emission computed tomography, simultaneous imaging of two physiological processes relies on discrimination of the energy of the emitted gamma rays, whereas the application of dual-tracer imaging to positron emission tomography (PET) imaging has been limited by the characteristic 511-keV emissions.

Procedures

To address this limitation, we developed a novel approach based on generalized factor analysis of dynamic sequences (GFADS) that exploits spatio-temporal differences between radiotracers and applied it to near-simultaneous imaging of 2-deoxy-2-[18F]fluoro-D-glucose (FDG) (brain metabolism) and 11C-raclopride (D2) with simulated human data and experimental rhesus monkey data. We show theoretically and verify by simulation and measurement that GFADS can separate FDG and raclopride measurements that are made nearly simultaneously.

Results

The theoretical development shows that GFADS can decompose the studies at several levels: (1) It decomposes the FDG and raclopride study so that they can be analyzed as though they were obtained separately. (2) If additional physiologic/anatomic constraints can be imposed, further decomposition is possible. (3) For the example of raclopride, specific and nonspecific binding can be determined on a pixel-by-pixel basis. We found good agreement between the estimated GFADS factors and the simulated ground truth time activity curves (TACs), and between the GFADS factor images and the corresponding ground truth activity distributions with errors less than 7.3 ± 1.3 %. Biases in estimation of specific D2 binding and relative metabolism activity were within 5.9 ± 3.6 % compared to the ground truth values. We also evaluated our approach in simultaneous dual-isotope brain PET studies in a rhesus monkey and obtained accuracy of better than 6 % in a mid-striatal volume, for striatal activity estimation.

Conclusions

Dynamic image sequences acquired following near-simultaneous injection of two PET radiopharmaceuticals can be separated into components based on the differences in the kinetics, provided their kinetic behaviors are distinct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Kadrmas D, Rust TC (2005) Feasibility of rapid multitracer PET tumor imaging. IEEE Trans Nuc Sci 52:1343–1347

    Article  Google Scholar 

  2. Koeppe RA, Raffel DM, Snyder SE et al (2001) Dual-[11C]tracer single-acquisition positron emission tomography studies. J Cereb Blood Flow Metab 21:1480–1492

    Article  PubMed  CAS  Google Scholar 

  3. Converse AK, Barnhart TE, Dabbs KA et al (2004) PET measurement of rCBF in the presence of a neurochemical tracer. J Neurosci Methods 132:199–208

    Article  PubMed  Google Scholar 

  4. Kudomi N, Hayashi T, Teramoto N et al (2005) Rapid quantitative measurement of CMRO2 and CBF by dual administration of 15O-labeled oxygen and water during a single PET scan-a validation study and error analysis in anesthetized monkeys. J Cereb Blood Flow Metab 25:1209–1224

    Article  PubMed  Google Scholar 

  5. Rust TC, DiBella EVR, McGann CJ et al (2006) Rapid dual-injection single-scan 13N-ammonia PET for quantification of rest and stress myocardial blood flows. Phys Med Biol 51:5347–5362

    Article  PubMed  CAS  Google Scholar 

  6. Rust TC, Kadrmas DJ (2005) Rapid dual-tracer PTSM + ATSM PET imaging of tumour blood flow and hypoxia: a simulation study. Phys Med Biol 51:61–75

    Article  PubMed  Google Scholar 

  7. Watabe H, Ikoma Y, Kimura Y et al (2006) PET kinetics analysis—compartment model. Ann Nucl Med 20:583–588

    Article  PubMed  CAS  Google Scholar 

  8. Black NF, McJames S, Rust TC et al (2008) Evaluation of rapid dual-tracer 62Cu-PTSM + 62 Cu-ATSM PET in dogs with spontaneously occurring tumors. Phys Med Biol 53:217–232

    Article  PubMed  Google Scholar 

  9. Plotkin M, Amthauer H, Klaffke S et al (2005) Combined 123I-FP-CIT and 123I-IBZM SPECT for the diagnosis of parkinsonian syndromes: study on 72 patients. J Neural Transmiss 112:677–692

    Article  CAS  Google Scholar 

  10. Knudsen GM, Karlsborg M, Thomsen G et al (2004) Imaging of dopamine transporters and D2 receptors in patients with Parkinson's disease and multiple system atrophy. Eur J Nucl Med Mol Imag 31:1631–1638

    Article  CAS  Google Scholar 

  11. Leenders KL (2003) Significance of non-presynaptic SPECT tracer methods in Parkinson's disease. Movement Disord 18:39–42

    Article  Google Scholar 

  12. El Fakhri G, Sitek A, Zimmerman RE, Ouyang J (2006) Generalized five dimensional dynamic and spectral factor analysis. Med Phys 33:1016–1024

    Article  PubMed  Google Scholar 

  13. Benali H, Guédon JP, Buvat I et al (1994) A statistical model for tomographic reconstruction methods using spline functions. SPIE 2299:242–251

    Article  Google Scholar 

  14. Wu HM, Hoh CK, Buxton DB et al (1995) Quantification of myocardial blood flow using dynamic nitrogen-13-ammonia PET studies and factor analysis of dynamic structures. J Nucl Med 36:2087–2093

    PubMed  CAS  Google Scholar 

  15. Kao CM, Chen CT, Wernick MN (2000) Statistical analysis of dynamic sequences for functional imaging. SPIE 3978:347–353

    Article  Google Scholar 

  16. El Fakhri G, Sitek A, Guérin B et al (2005) Quantitative dynamic cardiac 82Rb-PET imaging using generalized factor and compartment analyses. J Nucl Med 46:1264–1271

    PubMed  CAS  Google Scholar 

  17. Houston AS (1984) The effect of apex-finding errors on factor images obtained from factor analysis and oblique transformation. Phys Med Biol 29:1109–1116

    Article  PubMed  CAS  Google Scholar 

  18. Samal M, Karny M, Surova H et al (1989) On the existence of an unambiguous solution in factor analysis of dynamic studies. Phys Med Biol 34:223–228

    Article  PubMed  CAS  Google Scholar 

  19. Van Daele M, Joosten J, Devos P et al (1990) Background correction in factor analysis of dynamic scintigraphic studies: necessity and implementation. Phys Med Biol 35:1477–1485

    Article  PubMed  Google Scholar 

  20. Buvat I, Benali H, Frouin F et al (1993) Target apex-seeking in factor analysis of medical image sequences. Phys Med Biol 38:123–138

    Article  PubMed  CAS  Google Scholar 

  21. Sitek A, Di Bella EVR, Gullberg GT (2000) Factor analysis with a priori knowledge—application in dynamic cardiac SPECT. Phys Med Biol 45:2619–2638

    Article  PubMed  CAS  Google Scholar 

  22. Sitek A, Gullberg GT, Huesman RH (2002) Correction for ambiguous solutions in factor analysis using a penalized least squares objective. IEEE Trans Med Imag 21:216–225

    Article  Google Scholar 

  23. Di Paola R, Bazin JP, Aubry F et al (1989) Handling of dynamic sequences in nuclear medicine. IEEE Trans Nucl Sci 29:1310–1321

    Article  Google Scholar 

  24. Phelps ME, Huang SC, Hoffman EJ et al (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6:371–388

    Article  PubMed  CAS  Google Scholar 

  25. Lewellen TK, Harrison RL, Vannoy S (1998) The SimSET program. In: Ljungberg M, Strand S, King MA (eds) Monte Carlo simulations in nuclear medicine. IOP Publishing, Philadelphia, pp 77–92

    Google Scholar 

  26. Guerin B, El Fakhri G (2008) Realistic PET Monte Carlo simulation with pixellated block detectors, light sharing, random coincidences and dead-time modeling. IEEE Nucl Sci 55:942–952

    Article  CAS  Google Scholar 

  27. Farde L, Eriksson L, Blomquist G, Halldin C (1989) Kinetic analysis of central [11C]raclopride binding to D2-dopamine receptors studied by PET—a comparison to the equilibrium analysis. J Cereb Blood Flow Metab 9:696–708

    Article  PubMed  CAS  Google Scholar 

  28. Endres CJ, Kolachana BS, Saunders RC et al (1997) Kinetic modeling of [11C]raclopride: combined PET-microdialysis studies. J Cereb Blood Flow Metab 17:932–942

    Article  PubMed  CAS  Google Scholar 

  29. Sossi V, Camborde ML, Blinder S et al (2005) Dynamic imaging on the high resolution research tomograph (HRRT): non-human primate studies. IEEE Trans Nucl Sci Med Imag Proc 2005:1981–1985

    Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R01-HL110241 and R01CA165221. Drs. El Fakhri, Trott, Sitek Alpert, and Bonab are with the Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.

Conflict of Interest

There are no conflict of interests/financial disclosures to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges El Fakhri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Fakhri, G., Trott, C.M., Sitek, A. et al. Dual-Tracer PET Using Generalized Factor Analysis of Dynamic Sequences. Mol Imaging Biol 15, 666–674 (2013). https://doi.org/10.1007/s11307-013-0631-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-013-0631-1

Key words

Navigation