Skip to main content
Log in

Fully Automated Production of 11C-Doxepin for PET Imaging Histamine H1 Receptor

  • Brief Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Objectives

11C-Doxepin is an established positron emission tomography (PET) probe for imaging the histamine H1 receptor, which is associated with various neurological disorders and allergic diseases. A fully automated current Good Manufacturing Practices (cGMP)-compliant radiosynthesis is therefore desirable in order to facilitate clinical PET studies. We report here a fully automated production method for 11C-doxepin using a multipurpose PET module for clinical use.

Methods

11C-Doxepin was radiosynthesized by N-[11C]methylation of nordoxepin using [11C]methyl iodide in DMF solvent, and then purified by HPLC, and finally reformulated with solid phase extraction (SPE) using a cGMP-compliant automated multipurpose PET module developed in house. The final product was analyzed and subjected to quality control according to current US Pharmacopeia requirements.

Results

The radiochemical yield (decay corrected) of 11C-doxepin for clinical use was 47.0 ± 5.2% (n = 12) based on [11C]methyl iodide, moreover the radiochemical purity of 11C-doxepin was more than 97.5% with 1,200 ± 500 Ci/mmol specific activity(end of production). The total production time of 11C-doxepin was 37 min from end of bombardment (EOB) with the final product passing all tests under cGMP requirements for clinical use.

Conclusions

A simplified and reliable fully automated production of 11 C-doxepin for clinical use was developed, allowing the synthesis of the tracer with high yield using a cGMP-compliant module and procedure. The success of this approach could make the PET tracer 11 C-doxepin more accessible for clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3

References

  1. Passani MB, Blandina P (2011) Histamine receptors in the CNS as targets for therapeutic intervention. Trends Pharmacol Sci 32(4):242–249

    Article  PubMed  CAS  Google Scholar 

  2. Jones BL, Kearns GL (2011) Histamine: new thoughts about a familiar mediator. Clin Pharmacol Ther 89(2):189–197

    Article  PubMed  CAS  Google Scholar 

  3. Tashiro M, Mochizuki H, Iwabuchi K, Sakurada Y, Itoh M, Watanabe T et al (2002) Roles of histamine in regulation of arousal and cognition: functional neuroimaging of histamine H1 receptors in human brain. Life Sci 72(4–5):409–414

    Article  PubMed  CAS  Google Scholar 

  4. Singh H, Becker PM (2007) Novel therapeutic usage of low-dose doxepin hydrochloride. Expert Opin Investig Drugs 16(8):1295–1305

    Article  PubMed  CAS  Google Scholar 

  5. Pinder RM, Brogden RN, Speight TM, Avery GS (1977) Doxepin up-to-date: a review of its pharmacological properties and therapeutic efficacy with particular reference to depression. Drugs 13(3):161–218

    Article  PubMed  CAS  Google Scholar 

  6. Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V et al (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475:65–70

    Article  PubMed  CAS  Google Scholar 

  7. Tashiro M, Kato M, Miyake M, Watanuki S, Funaki Y, Ishikawa Y et al (2009) Dose dependency of brain histamine H(1) receptor occupancy following oral administration of cetirizine hydrochloride measured using PET with [11 C]doxepin. Hum Psychopharmacol 24(7):540–548

    Article  PubMed  CAS  Google Scholar 

  8. Yanai K, Watanabe T, Yokoyama H, Meguro K, Hatazawa J, Itoh M et al (1992) Histamine H1 receptors in human brain visualized in vivo by [11 C]doxepin and positron emission tomography. Neurosci Lett 137(2):145–148

    Article  PubMed  CAS  Google Scholar 

  9. Van Ruitenbeek P, Vermeeren A, Riedel WJ (2010) Cognitive domains affected by histamine H(1)-antagonism in humans: a literature review. Brain Res Rev 64(2):263–282

    Article  PubMed  Google Scholar 

  10. Benarroch EE (2010) Histamine in the CNS: multiple functions and potential neurologic implications. Neurology 75(16):1472–1479

    Article  PubMed  CAS  Google Scholar 

  11. Higuchi M, Yanai K, Okamura N, Meguro K, Arai H, Itoh M et al (2000) Histamine H(1) receptors in patients with Alzheimer's disease assessed by positron emission tomography. Neuroscience 99(4):721–729

    Article  PubMed  CAS  Google Scholar 

  12. Iwabuchi K, Ito C, Tashiro M, Kato M, Kano M, Itoh M et al (2005) Histamine H1 receptors in schizophrenic patients measured by positron emission tomography. Eur Neuropsychopharmacol 15(2):185–191

    Article  PubMed  CAS  Google Scholar 

  13. Smith DF, Jakobsen S (2009) Molecular tools for assessing human depression by positron emission tomography. Eur Neuropsychopharmacol 19(9):611–628

    Article  PubMed  CAS  Google Scholar 

  14. Iinuma K, Yokoyama H, Otsuki T, Yanai K, Watanabe T, Ido T et al (1993) Histamine H1 receptors in complex partial seizures. Lancet 341(8839):238

    Article  PubMed  CAS  Google Scholar 

  15. Tashiro M, Sakurada Y, Iwabuchi K, Mochizuki H, Kato M, Aoki M et al (2004) Central effects of fexofenadine and cetirizine: measurement of psychomotor performance, subjective sleepiness, and brain histamine H1-receptor occupancy using 11 C-doxepin positron emission tomography. J Clin Pharmacol 44(8):890–900

    Article  PubMed  CAS  Google Scholar 

  16. Tashiro M, Duan X, Kato M, Miyake M, Watanuki S, Ishikawa Y et al (2008) Brain histamine H1 receptor occupancy of orally administered antihistamines, bepotastine and diphenhydramine, measured by PET with 11 C-doxepin. Br J Clin Pharmacol 65(6):811–821

    Article  PubMed  CAS  Google Scholar 

  17. Senda M, Kubo N, Adachi K, Ikari Y, Matsumoto K, Shimizu K et al (2009) Cerebral histamine H1 receptor binding potential measured with PET under a test dose of olopatadine, an antihistamine, is reduced after repeated administration of olopatadine. J Nucl Med 50(6):887–892

    Article  PubMed  CAS  Google Scholar 

  18. Yun Z, Offord S, Dogan AS, Crabb AH, Wong DF (2002) Evaluation of antihistamine drugs by human [11 C]doxepin dynamic PET studies with a parametric image approach. Nuclear Science Symposium Conference Record, IEEE

    Google Scholar 

  19. Ravert HT, Dannals RF, Wilson AA, Wagner HN (1992) (N-[C-11]-Methyl) doxepin — synthesis of a radiotracer for studying the histamine H-1 receptor. J Label Compd Rad 31(5):403–407

    Article  CAS  Google Scholar 

  20. Iwata R, Pascali C, Bogni A, Yanai K, Kato M, Ido T et al (2002) A combined loop-SPE method for the automated preparation of [C-11]doxepin. J Label Compd Rad 45(4):271–280

    Article  CAS  Google Scholar 

  21. Chakraborty PK, Mangner TJ, Chugani DC, Muzik O, Chugani HT (1996) A high-yield and simplified procedure for the synthesis of alpha-[11 C]methyl-l-tryptophan. Nucl Med Biol 23(8):1005–1008

    Article  PubMed  CAS  Google Scholar 

  22. Mangner TJ, Klecker RW, Anderson L, Shields AF (2003) Synthesis of 2′-deoxy-2′-[18 F]fluoro-beta-d-arabinofuranosyl nucleosides, [18 F]FAU, [18 F]FMAU, [18 F]FBAU and [18 F]FIAU, as potential PET agents for imaging cellular proliferation. Synthesis of [18 F]labelled FAU, FMAU, FBAU, FIAU. Nucl Med Biol 30(3):215–224

    Article  PubMed  CAS  Google Scholar 

  23. Li Z, Conti PS (2010) Radiopharmaceutical chemistry for positron emission tomography. Adv Drug Deliv Rev 62(11):1031–1051

    Article  PubMed  CAS  Google Scholar 

  24. Lemaire C, Plenevaux A, Aerts J, Del Fiore G, Brihaye C, Le Bars D et al (1999) Solid phase extraction — an alternative to the use of rotary evaporators for solvent removal in the rapid formulation of PET radiopharmaceuticals. J Label Compd Rad 42(1):63–75

    Article  CAS  Google Scholar 

  25. Krasikova R (2007) Synthesis modules and automation in F-18 labeling. Ernst Schering Res Found Workshop 62:289–316

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the staff members of the Children's Hospital of Michigan PET center for their service and support.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hancheng Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, H., Mangner, T.J., Muzik, O. et al. Fully Automated Production of 11C-Doxepin for PET Imaging Histamine H1 Receptor. Mol Imaging Biol 14, 546–552 (2012). https://doi.org/10.1007/s11307-011-0535-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-011-0535-x

Key words

Navigation