Skip to main content
Log in

Pharmacokinetics, Metabolism, Biodistribution, Radiation Dosimetry, and Toxicology of 18F-Fluoroacetate (18F-FACE) in Non-human Primates

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Introduction

To facilitate the clinical translation of 18F-fluoroacetate (18F-FACE), the pharmacokinetics, biodistribution, radiolabeled metabolites, radiation dosimetry, and pharmacological safety of diagnostic doses of 18F-FACE were determined in non-human primates.

Methods

18F-FACE was synthesized using a custom-built automated synthesis module. Six rhesus monkeys (three of each sex) were injected intravenously with 18F-FACE (165.4 ± 28.5 MBq), followed by dynamic positron emission tomography (PET) imaging of the thoracoabdominal area during 0–30 min post-injection and static whole-body PET imaging at 40, 100, and 170 min. Serial blood samples and a urine sample were obtained from each animal to determine the time course of 18F-FACE and its radiolabeled metabolites. Electrocardiograms and hematology analyses were obtained to evaluate the acute and delayed toxicity of diagnostic dosages of 18F-FACE. The time-integrated activity coefficients for individual source organs and the whole body after administration of 18F-FACE were obtained using quantitative analyses of dynamic and static PET images and were extrapolated to humans.

Results

The blood clearance of 18F-FACE exhibited bi-exponential kinetics with half-times of 4 and 250 min for the fast and slow phases, respectively. A rapid accumulation of 18F-FACE-derived radioactivity was observed in the liver and kidneys, followed by clearance of the radioactivity into the intestine and the urinary bladder. Radio-HPLC analyses of blood and urine samples demonstrated that 18F-fluoride was the only detectable radiolabeled metabolite at the level of less than 9% of total radioactivity in blood at 180 min after the 18F-FACE injection. The uptake of free 18F-fluoride in the bones was insignificant during the course of the imaging studies. No significant changes in ECG, CBC, liver enzymes, or renal function were observed. The estimated effective dose for an adult human is 3.90–7.81 mSv from the administration of 185–370 MBq of 18F-FACE.

Conclusions

The effective dose and individual organ radiation absorbed doses from administration of a diagnostic dosage of 18F-FACE are acceptable. From a pharmacologic perspective, diagnostic dosages of 18F-FACE are non-toxic in primates and, therefore, could be safely administered to human patients for PET imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hustinx R, Benard F, Alavi A (2002) Whole-body FDG-PET imaging in the management of patients with cancer. Semin Nucl Med 32:35–46

    Article  PubMed  Google Scholar 

  2. Kelloff GJ, Hoffman JM, Johnson B, Scher HI, Siegel BA, Cheng EY, Cheson BD, O’Shaughnessy J, Guyton KZ, Mankoff DA, Shankar L, Larson SM, Sigman CC, Schilsky RL, Sullivan DC (2005) Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 11:2785–2808

    Article  PubMed  CAS  Google Scholar 

  3. Ide M (2006) Cancer screening with FDG-PET. Q J Nucl Med Mol Imaging 50:23–27

    PubMed  CAS  Google Scholar 

  4. Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150S

    Article  PubMed  CAS  Google Scholar 

  5. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  6. Busk M, Horsman MR, Jakobsen S, Bussink J, van der Kogel A, Overgaard J (2008) Cellular uptake of PET tracers of glucose metabolism and hypoxia and their linkage. Eur J Nucl Med Mol Imaging 35:2294–2303

    Article  PubMed  CAS  Google Scholar 

  7. Busk M, Horsman MR, Kristjansen PE, van der Kogel AJ, Bussink J, Overgaard J (2008) Aerobic glycolysis in cancers: implications for the usability of oxygen-responsive genes and fluorodeoxyglucose-PET as markers of tissue hypoxia. Int J Cancer 122:2726–2734

    Article  PubMed  CAS  Google Scholar 

  8. Bouchelouche K, Oehr P (2008) Recent developments in urologic oncology: positron emission tomography molecular imaging. Curr Opin Oncol 20:321–326

    Article  PubMed  CAS  Google Scholar 

  9. Kumar R, Zhuang H, Alavi A (2004) PET in the management of urologic malignancies. Radiol Clin North Am 42:1141–1153, ix

    Article  PubMed  Google Scholar 

  10. Lawrentschuk N, Davis ID, Bolton DM, Scott AM (2010) Functional imaging of renal cell carcinoma. Nat Rev Urol 7:258–266

    Article  PubMed  Google Scholar 

  11. Wolfort RM, Papillion PW, Turnage RH, Lillien DL, Ramaswamy MR, Zibari GB (2011) Role of FDG-PET in the evaluation and staging of hepatocellular carcinoma with comparison of tumor size, AFP level, and histologic grade. Int Surg 95:67–75

    Google Scholar 

  12. Ott K, Herrmann K, Krause BJ, Lordick F (2008) The value of PET imaging in patients with localized gastroesophageal cancer. Gastrointest Cancer Res 2:287–294

    PubMed  Google Scholar 

  13. Lau EW, Drummond KJ, Ware RE, Drummond E, Hogg A, Ryan G, Grigg A, Callahan J, Hicks RJ (2011) Comparative PET study using F-18 FET and F-18 FDG for the evaluation of patients with suspected brain tumour. J Clin Neurosci 17:43–49

    Article  Google Scholar 

  14. Nanni C, Fantini L, Nicolini S, Fanti S (2010) Non FDG PET. Clin Radiol 65:536–548

    Article  PubMed  CAS  Google Scholar 

  15. Pike VW, Eakins MN, Allan RM, Selwyn AP (1982) Preparation of [1–11C]acetate—an agent for the study of myocardial metabolism by positron emission tomography. Int J Appl Radiat Isot 33:505–512

    Article  PubMed  CAS  Google Scholar 

  16. Schelbert HR (2000) PET contributions to understanding normal and abnormal cardiac perfusion and metabolism. Ann Biomed Eng 28:922–929

    Article  PubMed  CAS  Google Scholar 

  17. Timmer SA, Germans T, Gotte MJ, Russel IK, Dijkmans PA, Lubberink M, ten Berg JM, ten Cate FJ, Lammertsma AA, Knaapen P, van Rossum AC (2010) Determinants of myocardial energetics and efficiency in symptomatic hypertrophic cardiomyopathy. Eur J Nucl Med Mol Imaging 37:779–788

    Article  PubMed  Google Scholar 

  18. Timmer SA, Lubberink M, Germans T, Gotte MJ, ten Berg JM, ten Cate FJ, van Rossum AC, Lammertsma AA, Knaapen P (2010) Potential of [11C] acetate for measuring myocardial blood flow: studies in normal subjects and patients with hypertrophic cardiomyopathy. J Nucl Cardiol 17:264–275

    Article  PubMed  CAS  Google Scholar 

  19. Oyama N, Akino H, Kanamaru H, Suzuki Y, Muramoto S, Yonekura Y, Sadato N, Yamamoto K, Okada K (2002) 11C-acetate PET imaging of prostate cancer. J Nucl Med 43:181–186

    PubMed  CAS  Google Scholar 

  20. Oyama N, Miller TR, Dehdashti F, Siegel BA, Fischer KC, Michalski JM, Kibel AS, Andriole GL, Picus J, Welch MJ (2003) 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 44:549–555

    PubMed  CAS  Google Scholar 

  21. Kotzerke J, Volkmer BG, Neumaier B, Gschwend JE, Hautmann RE, Reske SN (2002) Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 29:1380–1384

    Article  PubMed  CAS  Google Scholar 

  22. Fricke E, Machtens S, Hofmann M, van den Hoff J, Bergh S, Brunkhorst T, Meyer GJ, Karstens JH, Knapp WH, Boerner AR (2003) Positron emission tomography with 11C-acetate and 18F-FDG in prostate cancer patients. Eur J Nucl Med Mol Imaging 30:607–611

    Article  PubMed  CAS  Google Scholar 

  23. Sandblom G, Sorensen J, Lundin N, Haggman M, Malmstrom PU (2006) Positron emission tomography with C11-acetate for tumor detection and localization in patients with prostate-specific antigen relapse after radical prostatectomy. Urology 67:996–1000

    Article  PubMed  Google Scholar 

  24. Soloviev D, Fini A, Chierichetti F, Al-Nahhas A, Rubello D (2008) PET imaging with 11C-acetate in prostate cancer: a biochemical, radiochemical and clinical perspective. Eur J Nucl Med Mol Imaging 35:942–949

    Article  PubMed  Google Scholar 

  25. Matthies A, Ezziddin S, Ulrich EM, Palmedo H, Biersack HJ, Bender H, Guhlke S (2004) Imaging of prostate cancer metastases with 18F-fluoroacetate using PET/CT. Eur J Nucl Med Mol Imaging 31:797

    Article  PubMed  Google Scholar 

  26. Ponde DE, Dence CS, Oyama N, Kim J, Tai YC, Laforest R, Siegel BA, Welch MJ (2007) 18F-fluoroacetate: a potential acetate analog for prostate tumor imaging—in vivo evaluation of 18F-fluoroacetate versus 11C-acetate. J Nucl Med 48:420–428

    PubMed  CAS  Google Scholar 

  27. Lindhe O, Sun A, Ulin J, Rahman O, Langstrom B, Sorensen J (2009) [18F]Fluoroacetate is not a functional analogue of [11C]acetate in normal physiology. Eur J Nucl Med Mol Imaging 36:1453–1459

    Article  PubMed  CAS  Google Scholar 

  28. Sykes TR, Ruth TJ, Adam MJ (1986) Synthesis and murine tissue uptake of sodium [18F]fluoroacetate. Int J Radiat Appl Instrum B 13:497–500

    Article  CAS  Google Scholar 

  29. Jeong JMLD, Chung J-K, Lee MC, Koh C-S, Kang SS (1997) Synthesis of no-carrier-added [18F]fluoroacetate. J Labelled Compd Radiopharm 39:395–399

    Article  CAS  Google Scholar 

  30. Sun LQ, Mori T, Dence CS, Ponde DE, Welch MJ, Furukawa T, Yonekura Y, Fujibayashi Y (2006) New approach to fully automated synthesis of sodium [18 F]fluoroacetate—a simple and fast method using a commercial synthesizer. Nucl Med Biol 33:153–158

    Article  PubMed  CAS  Google Scholar 

  31. Bolch WE, Eckerman KF, Sgouros G, Thomas SR (2009) MIRD pamphlet no. 21: a generalized schema for radiopharmaceutical dosimetry–standardization of nomenclature. J Nucl Med 50:477–484

    Article  PubMed  CAS  Google Scholar 

  32. Macey DJ WL, Breitz HB, Liu A, Johnson TK, Zanzonico PB (2001) A primer for radioimmunotherapy and radionuclide therapy. AAPM report no 7. http://www.aapm.org/pubs/reports/rpt_71.pdf

  33. Morris MJ, Scher HI (2007) 11C-acetate PET imaging in prostate cancer. Eur J Nucl Med Mol Imaging 34:181–184

    Article  PubMed  Google Scholar 

  34. Brix G, Lechel U, Glatting G, Ziegler SI, Munzing W, Muller SP, Beyer T (2005) Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med 46:608–613

    PubMed  CAS  Google Scholar 

  35. Deloar HM, Fujiwara T, Shidahara M, Nakamura T, Watabe H, Narita Y, Itoh M, Miyake M, Watanuki S (1998) Estimation of absorbed dose for 2-[F-18]fluoro-2-deoxy-D-glucose using whole-body positron emission tomography and magnetic resonance imaging. Eur J Nucl Med 25:565–574

    Article  PubMed  CAS  Google Scholar 

  36. Seltzer MA, Jahan SA, Sparks R, Stout DB, Satyamurthy N, Dahlbom M, Phelps ME, Barrio JR (2004) Radiation dose estimates in humans for 11C-acetate whole-body PET. J Nucl Med 45:1233–1236

    PubMed  CAS  Google Scholar 

  37. Anonymous (1998) Radiation dose to patients from radiopharmaceuticals (addendum 2 to ICRP publication 53). Ann ICRP 28:1–126

    Google Scholar 

  38. Kase KR (2004) Radiation protection principles of NCRP. Health Phys 87:251–257

    Article  PubMed  CAS  Google Scholar 

  39. Liu RS, Chou TK, Chang CH, Wu CY, Chang CW, Chang TJ, Wang SJ, Lin WJ, Wang HE (2009) Biodistribution, pharmacokinetics and PET imaging of [(18)F]FMISO, [18F]FDG and [18F]FAc in a sarcoma- and inflammation-bearing mouse model. Nucl Med Biol 36:305–312

    Article  PubMed  CAS  Google Scholar 

  40. Tecle B, Casida JE (1989) Enzymatic defluorination and metabolism of fluoroacetate, fluoroacetamide, fluoroethanol, and (−)-erythro-fluorocitrate in rats and mice examined by 19F and 13C NMR. Chem Res Toxicol 2:429–435

    Article  PubMed  CAS  Google Scholar 

  41. Marik J, Ogasawara A, Martin-McNulty B, Ross J, Flores JE, Gill HS, Tinianow JN, Vanderbilt AN, Nishimura M, Peale F, Pastuskovas C, Greve JM, van Bruggen N, Williams SP (2009) PET of glial metabolism using 2-18F-fluoroacetate. J Nucl Med 50:982–990

    Article  PubMed  Google Scholar 

  42. Muir D, Berl S, Clarke DD (1986) Acetate and fluoroacetate as possible markers for glial metabolism in vivo. Brain Res 380:336–340

    Article  PubMed  CAS  Google Scholar 

  43. Clarke DD (1991) Fluoroacetate and fluorocitrate: mechanism of action. Neurochem Res 16:1055–1058

    Article  PubMed  CAS  Google Scholar 

  44. Peters R, Wakelin RW (1953) Biochemistry of fluoroacetate poisoning; the isolation and some properties of the fluorotricarboxylic acid inhibitor of citrate metabolism. Proc R Soc Lond B Biol Sci 140:497–507

    Article  PubMed  CAS  Google Scholar 

  45. Proudfoot AT, Bradberry SM, Vale JA (2006) Sodium fluoroacetate poisoning. Toxicol Rev 25:213–219

    Article  PubMed  CAS  Google Scholar 

  46. Lauble H, Kennedy MC, Emptage MH, Beinert H, Stout CD (1996) The reaction of fluorocitrate with aconitase and the crystal structure of the enzyme-inhibitor complex. Proc Natl Acad Sci USA 93:13699–13703

    Article  PubMed  CAS  Google Scholar 

  47. Menendez JA, Lupu R (2007) Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer 7:763–777

    Article  PubMed  CAS  Google Scholar 

  48. Lopes-Cardozo M, Mulder I, van Vugt F, Hermans PG, van den Bergh SG, Klazinga W, de Vries-Akkerman E (1975) Aspects of ketogenesis: control and mechanism of ketone-body formation in isolated rat-liver mitochondria. Mol Cell Biochem 9:155–173

    Article  PubMed  CAS  Google Scholar 

  49. Fenselau A, Wallis K, Morris HP (1976) Subcellular localization of acetoacetate coenzyme A transferase in rat hepatomas. Cancer Res 36:4429–4433

    PubMed  CAS  Google Scholar 

  50. Yamashita K, Yada H, Ariyoshi T (2004) Neurotoxic effects of alpha-fluoro-beta-alanine (FBAL) and fluoroacetic acid (FA) on dogs. J Toxicol Sci 29:155–166

    Article  PubMed  CAS  Google Scholar 

  51. Goh CS, Hodgson DR, Fearnside SM, Heller J, Malikides N (2005) Sodium monofluoroacetate (compound 1080) poisoning in dogs. Aust Vet J 83:474–479

    Article  PubMed  CAS  Google Scholar 

  52. Goncharov NV, Jenkins RO, Radilov AS (2006) Toxicology of fluoroacetate: a review, with possible directions for therapy research. J Appl Toxicol 26:148–161

    Article  PubMed  CAS  Google Scholar 

  53. Gajdusek DC, Luther G (1950) Fluoroacetate poisoning a review and report of a case. Am J Dis Child 79:310–320

    PubMed  CAS  Google Scholar 

  54. Harrisson JW, Ambrus JL, Ambrus CM (1952) Fluoroacetate (1080) poisoning. Ind Med Surg 21:440–442

    PubMed  CAS  Google Scholar 

  55. Harrisson JW, Ambrus JL, Ambrus CM, Rees EW, Peters RH Jr, Reese LC (1952) Acute poisoning with sodium fluoroacetate (compound 1080). J Am Med Assoc 149:1520–1522

    Article  PubMed  CAS  Google Scholar 

  56. Vartiainen T, Gynther J (1984) Fluoroacetic acid in guar gum. Food Chem Toxicol 22:307–308

    Article  PubMed  CAS  Google Scholar 

  57. Savarie P (1984) Toxic characteristics of fluorocitrate, the toxic metabolite of compound 1080. In: 11th Vertebrate Pest Conference University of Nebraska, Lincoln, University of Nebraska, Lincoln, pp 132–137

  58. Carrell HL, Glusker JP, Villafranca JJ, Mildvan AS, Dummel RJ, Kun E (1970) Fluorocitrate inhibition of aconitase: relative configuration of inhibitory isomer by x-ray crystallography. Science 170:1412–1414

    Article  PubMed  CAS  Google Scholar 

  59. Villafranca JJ, Platus E (1973) Fluorocitrate inhibition of aconitase. Reversibility of the inactivation. Biochem Biophys Res Commun 55:1197–1207

    Article  PubMed  CAS  Google Scholar 

  60. Brand MD, Evans SM, Mendes-Mourao J, Chappell JB (1973) Fluorocitrate inhibition of aconitate hydratase and the tricarboxylate carrier of rat liver mitochondria. Biochem J 134:217–224

    PubMed  CAS  Google Scholar 

  61. Eanes RZ, Kun E (1974) Inhibition of liver aconitase isozymes by (−)-erythro-fluorocitrate. Mol Pharmacol 10:130–139

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH-NCI CA-016672 (MD Anderson Cancer Center Support Grant) and new project development funds of the Department of Experimental Diagnostic Imaging, MDACC. We thank Nancy Swanston, CNMT, for help with the PET studies, Karen Yoas for help in coordinating this study, and the anonymous reviewers for their insights and advice.

Conflict of Interest Disclosure

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juri G. Gelovani.

Additional information

Ryuichi Nishii and William Tong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishii, R., Tong, W., Wendt, R. et al. Pharmacokinetics, Metabolism, Biodistribution, Radiation Dosimetry, and Toxicology of 18F-Fluoroacetate (18F-FACE) in Non-human Primates. Mol Imaging Biol 14, 213–224 (2012). https://doi.org/10.1007/s11307-011-0485-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-011-0485-3

Key words

Navigation