Skip to main content

Advertisement

Log in

Labeling Protocols for In Vivo Tracking of Human Skeletal Muscle Cells (HSkMCs) by Magnetic Resonance and Bioluminescence Imaging

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

We propose herein labeling protocols for multimodal in vivo visualization of human skeletal muscle cells (HSkMCs) by MRI and BLI to investigate the survival, localization, and proliferation/differentiation of these cells in cell-mediated therapy.

Procedures

HSkMCs were labeled with different quantities of Endorem® and transfection agents or infected with lentiviral vector expressing the luciferase gene under the myogenin promoter. Cells were evaluated before and after intra-arterial injection in NUDE mice with N2-induced muscle inflammation.

Results

Neither iron labeling nor infection affected cell features; the number of iron-positive cells increased proportionally to the iron content in the medium and in the presence of transfection agents. Loaded cells were detected for up to 1 month by MRI and 2 months by BLI.

Conclusions

These protocols could be used to visualize new stem cells, in vivo and over time, in preclinical studies of cell-based treatments for myopathies of different etiologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

FLASH 3D:

Fast low-angle shot 3-dimensional sequence

i.a.:

Intra-arterial

i.m.:

Intramuscular

HSkMCs:

Human skeletal muscle cells

MRI:

Magnetic resonance imaging

MSCs:

Mesenchymal stem cells

MSME:

Multi-slice multi-echo

NSCs:

Neuronal stem cells

N2 :

Liquid nitrogen

o.m.:

Original magnification

PB:

Hexadimethrine bromide (polybrene)

PLL:

Poly-l-lysine hydrobromide

PrS:

Protamine sulfate

SPIO:

Superparamagnetic iron oxide

T2 :

Time of loss of transverse magnetization

ESCs:

Embryonic stem cells

iPSCs:

Induced pluripotent stem cells

BMSCs:

Bone marrow-derived stem cells

ASCs:

Adult stem cells

USPIO:

Ultra-small superparamagnetic iron oxide

BLI:

Bioluminescence imaging

MuSCs:

Muscle stem cells

NTX:

Notexin

DAB:

Diaminobenzidine

References

  1. McKay R (2000) Stem cells—hype and hope. Nature 406:361–364

    Article  PubMed  Google Scholar 

  2. Menasche P, Hagege AA, Scorsin M et al (2001) Myoblast transplantation for heart failure. Lancet 357:279–280

    Article  PubMed  CAS  Google Scholar 

  3. Leobon B, Garcin I, Menasche P, Vilquin JT, Audinat E, Charpak S (2003) Myoblasts transplanted into rat infarcite myocardium are functionally isolated from their host. Proc Natl Acad Sci USA 100(13):7808–7811

    Article  PubMed  CAS  Google Scholar 

  4. Qu-Petersen Z, Deasy B, Jankoswski R et al (2002) Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 157:851–864

    Article  PubMed  CAS  Google Scholar 

  5. Tamaki T, Okada Y, Uchiyama Y et al (2007) Synchronized reconstitution of muscle fibers, peripheral nerves and blood vessels by murine skeletal muscle derived CD34(−)/CD45(−) cells. Histochem Cell Biol 128:349–360

    Article  PubMed  CAS  Google Scholar 

  6. Barberi T, Bradbury M, Dincer Z, Panagiotakos G, Socci ND, Studer L (2007) Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat Med 13:642–648

    Article  PubMed  CAS  Google Scholar 

  7. Darabi R, Gehlbach K, Bachoo RM et al (2008) Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat Med 14:134–143

    Article  PubMed  CAS  Google Scholar 

  8. Bittner RE, Schofer C, Weipoltshammer K et al (1999) Recruitment of bone marrow derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat Embryol (Berl) 199:391–396

    Article  CAS  Google Scholar 

  9. Montarras D, Morgan J, Collins C et al (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309:2064–2067

    Article  PubMed  CAS  Google Scholar 

  10. Brunelli S, Cossu G (2005) A role for Msx2 and Necdin in smooth muscle differentiation of mesoangioblasts and other mesoderm progenitor cells. TCM 15:96–100

    PubMed  CAS  Google Scholar 

  11. Westerman KA, Penvose A, Yang Z, Allen PD, Vacanti CA (2010) Adult muscle “stem” cells can be sustained in culture as free-floating myospheres. Exp Cell Res 316(12):1966–1976

    Article  PubMed  CAS  Google Scholar 

  12. Morosetti R, Mirabella M, Gliubizzi C et al (2006) MyoD expression restores defective myogenic differentiation of human mesoangioblasts from inclusion-body myositis muscle. Proc Natl Acad Sci USA 103(45):16995–17000

    Article  PubMed  CAS  Google Scholar 

  13. Dellavalle A, Sampaolesi M, Tonlorenzi R et al (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9(3):255–267

    Article  PubMed  CAS  Google Scholar 

  14. Bachrach E, Li S, Perez AL et al (2004) Systemic delivery of human microdystrophin to regenerating mouse dystrophic muscle by muscle progenitor cells. Proc Natl Acad Sci USA 101:3581–3586

    Article  PubMed  CAS  Google Scholar 

  15. Gussoni E, Soneoka Y, Trickland CD et al (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394

    PubMed  CAS  Google Scholar 

  16. Sampaolesi M, Torrente Y, Innocenzi A et al (2003) Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301:487–492

    Article  PubMed  CAS  Google Scholar 

  17. Neri M, Maderna C, Cavazzin C et al (2008) Efficient in vitro labeling of human neural precursor cells with superparamagnetic iron oxide particles: relevance for in vivo cell tracking. Stem Cells 26:505–516

    Article  PubMed  CAS  Google Scholar 

  18. Daldrup-Link HE, Rudelius M, Oostendorp RAJ et al (2003) Targeting of hematopoietic progenitor cells with MR contrast agents. Radiology 228:760–767

    Article  PubMed  Google Scholar 

  19. Metz S, Bonaterra G, Rudelius M, Settles M, Rummeny EJ, Daldrup HE (2004) Link capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 14:1851–1858

    Article  PubMed  Google Scholar 

  20. Frank JA, Zywicke H, Jordan EK et al (2002) Magentic intracellular labeling of mammalian cells by combining (FDA-approved) superparamagnetic iron oxide MR contrast agents and commonly used transfection agents. Acad Radiol 9:S484–S487

    Article  PubMed  Google Scholar 

  21. Zhang Z, Van de Bos EJ, Wielopolski PA, de Jong-PopiJus M, Dunker DJ, Krestin GP (2004) High-resolution magnetic resonance imaging of iron-labeled myoblasts using a standard 1.5-T clinical scanner. Magma 17:201–209

    Article  PubMed  CAS  Google Scholar 

  22. Cahill KS, Gaidosh G, Huard J, Silver X, Byrne BJ, Walter GA (2004) Noninvasive monitoring and tracking of muscle stem cells transplant. Transplantation 78(11):1626–1633

    Article  PubMed  Google Scholar 

  23. Sacco A, Doyonnas R, Kraft P, Vitrovic S, Blau HM (2008) Self-renewal and expansion of single transplanted muscle cells. Nature 426(27):502–506

    Article  Google Scholar 

  24. Montet-Abou K, Montet X, Weissleder R, Josephson L (2007) Cell internalization of magnetic nanoparticles using transfection agents. Mol Imaging 6(1):1–9

    PubMed  CAS  Google Scholar 

  25. Zappi E, Lombardo W (1984) Combined Fontana–Masson/Perls’ staining. Am J Dermatopathol 6:143–145

    PubMed  Google Scholar 

  26. Boutry S, Brunin S, Mahieu I, Laurent S, Vander Elst L, Muller RN (2008) Magnetic labeling of non-phagocytic adherent cells with iron oxide nanoparticles: a comprehensive study. Contrast Media Mol Imaging 3(6):223–232

    Article  PubMed  CAS  Google Scholar 

  27. Chen C, Okayama H (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7:2745–2752

    PubMed  CAS  Google Scholar 

  28. Wehrman TS, von Degenfeld G, Krutzik PO, Nolan GP, Blau HM (2006) Luminescent imaging of beta galactosidase activity in living subjects using sequential reporter-enzyme luminescence. Nat Methods 3:295–301

    Article  PubMed  CAS  Google Scholar 

  29. Arbab AS, Frenkel V, Pandit SD et al (2006) Magnetic resonance imaging and confocal microscopy studies of magnetically labeled endothelial progenitor cells trafficking to sites of tumor angiogenesis. Stem Cells 24:671–678

    Article  PubMed  CAS  Google Scholar 

  30. Matuszewski L, Persigehl T, Wall A et al (2005) Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency. Radiology 235:155–161

    Article  PubMed  Google Scholar 

  31. de Vries IJM, Lesterhuis WJ, Barentsz JO et al (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407–1413

    Article  PubMed  Google Scholar 

  32. Bulte JWM, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499

    Article  PubMed  CAS  Google Scholar 

  33. Franklin RJM, Blaschuk KL, Bearchell MC et al (1999) Magnetic resonance imaging of transplanted oligodendrocyte precursors in the rat brain. NeuroReport 10:3961–3965

    Article  PubMed  CAS  Google Scholar 

  34. Bulte JWM, Zhang SC, van Gelderen P et al (1999) Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA 96:15256–15261

    Article  PubMed  CAS  Google Scholar 

  35. Dunning MD, Lakatos A, Loizou L et al (2004) Superparamagnetic iron oxide labeled Schwann cells and olfactory ensheathing cells can be traced in vivo by magnetic resonance imaging and retain functional properties after transplantation into the CNS. J Neurosci 24:9799–9810

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. B. Rosa (Accelera S.r.l.) for surgical training, Dr. M. Saresella and Dr. R. Lui for their help with the FACS analysis, D. Tosi for the IHC images, Dr. F. Corsi and R. Allevi for the electron microscopy (Centre of Electron Microscopy for the Development of Medical Nanotechnologies, L. Sacco Hospital Via G.B. Grassi), and Dr. S. Rivella for providing the PLW lentiviral backbone. The authors are also grateful to Mrs. Catherine Wrenn for her advice and skillful editorial support.

This study was supported by a Cariplo Foundation grant (2007.5281)

The authors declare that they have no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Clerici.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 16.0 kb)

ESM 2

(PDF 171 kb)

ESM 3

(PDF 113 kb)

ESM 4

(PDF 470 kb)

ESM 5

(PDF 129 kb)

ESM 6

(PDF 11.8 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Libani, I.V., Lucignani, G., Gianelli, U. et al. Labeling Protocols for In Vivo Tracking of Human Skeletal Muscle Cells (HSkMCs) by Magnetic Resonance and Bioluminescence Imaging. Mol Imaging Biol 14, 47–59 (2012). https://doi.org/10.1007/s11307-011-0474-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-011-0474-6

Key words

Navigation