Skip to main content
Log in

Targeted Multifunctional Multimodal Protein-Shell Microspheres as Cancer Imaging Contrast Agents

  • Brief Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

In this study, protein-shell microspheres filled with a suspension of iron oxide nanoparticles in oil are demonstrated as multimodal contrast agents in magnetic resonance imaging (MRI), magnetomotive optical coherence tomography (MM-OCT), and ultrasound imaging. The development, characterization, and use of multifunctional multimodal microspheres are described for targeted contrast and therapeutic applications.

Procedures

A preclinical rat model was used to demonstrate the feasibility of the multimodal multifunctional microspheres as contrast agents in ultrasound, MM-OCT and MRI. Microspheres were functionalized with the RGD peptide ligand, which is targeted to αvβ3 integrin receptors that are over-expressed in tumors and atherosclerotic lesions.

Results

These microspheres, which contain iron oxide nanoparticles in their cores, can be modulated externally using a magnetic field to create dynamic contrast in MM-OCT. With the presence of iron oxide nanoparticles, these agents also show significant negative T2 contrast in MRI. Using ultrasound B-mode imaging at a frequency of 30 MHz, a marked enhancement of scatter intensity from in vivo rat mammary tumor tissue was observed for these targeted protein microspheres.

Conclusions

Preliminary results demonstrate multimodal contrast-enhanced imaging of these functionalized microsphere agents with MRI, MM-OCT, ultrasound imaging, and fluorescence microscopy, including in vivo tracking of the dynamics of these microspheres in real-time using a high-frequency ultrasound imaging system. These targeted oil-filled protein microspheres with the capacity for high drug-delivery loads offer the potential for local delivery of lipophilic drugs under image guidance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Wang X, Yang L, Chen Z, Shin DM (2008) Application of nanotechnology to cancer therapy and imaging. CA Cancer J Clin 58:97–110

    Article  PubMed  Google Scholar 

  2. Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19:311–330

    Article  PubMed  CAS  Google Scholar 

  3. Boppart SA, Oldenburg AL, Xu C, Marks DL (2005) Optical probes and techniques for molecular contrast enhancement in coherence imaging. J Biomed Opt 10:041208

    Article  Google Scholar 

  4. Lee TM, Toublan FJ, Sitafalwalla S et al (2003) Engineered microsphere contrast agents for optical coherence tomography. Opt Lett 28:1456–1458

    Google Scholar 

  5. McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug deliv Rev 60:1241–1251

    Article  PubMed  CAS  Google Scholar 

  6. Gao X, Gui Y, Levenson RM et al (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  PubMed  CAS  Google Scholar 

  7. Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254:1178–1181

    Article  PubMed  CAS  Google Scholar 

  8. Bouma BE, Tearney GJ (eds) (2002) Handbook of Optical Coherence Tomography. Marcel Dekker, New York, New York

  9. Boppart SA, Bouma BE, Pitris C et al (1998) Intraoperative assessment of microsurgery with three-dimensional optical coherence tomography. Radiology 208:81–86

    PubMed  CAS  Google Scholar 

  10. Nguyen FT, Zysk AM, Chaney EJ et al (2009) Intraoperative evaluation of breast tumor margins with optical coherence tomography. Cancer Res 69:8790–8796

    Article  PubMed  CAS  Google Scholar 

  11. Rao KD, Choma MA, Yazdanfar S et al (2003) Molecular contrast in optical coherence tomography by use of a pump-probe technique. Opt Lett 28:340–342

    Article  PubMed  Google Scholar 

  12. Xu C, Ye J, Marks DL, Boppart SA (2004) Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography. Opt Lett 29:1647–1649

    Article  PubMed  CAS  Google Scholar 

  13. Oldenburg AL, Hansen MN, Zweifel DA et al (2006) Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. Opt Express 14:6724–6738

    Article  PubMed  CAS  Google Scholar 

  14. Cang H, Sun T, Li Z-Y et al (2005) Gold nanocages as contrast agents for spectroscopic optical coherence tomography. Opt Lett 30:3048–3050

    Article  PubMed  CAS  Google Scholar 

  15. Barton JK, Hoying JB, Sullivan CJ (2002) Use of microbubbles as an optical coherence tomography contrast agent. Acad Radiol 9:S52–S55

    Article  PubMed  Google Scholar 

  16. Rapoport N, Gao Z, Kennedy A (2007) Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 99:1095–1106

    Article  PubMed  CAS  Google Scholar 

  17. Kolbeck KJ (1999) Biomedical applications of protein microspheres, PhD Dissertation in Chemistry. University of Illinois at Urbana-Champaign, Urbana

    Google Scholar 

  18. Dibbern EM (2005) Core shell microspheres for biomedical applications, PhD Dissertation, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois

  19. Toublan FJJ, Boppart SA, Suslick KS (2006) Tumor targeting by surface-modified protein microspheres. J Am Chem. Soc.128:3472–3473

    Google Scholar 

  20. Oldenburg AL, Toublan FJ, Suslick KS et al (2005) Magnetomotive contrast for in vivo optical coherence tomography. Opt Express 13:6597–6614

    Article  PubMed  Google Scholar 

  21. Oldenburg AL, Gunther JR, Boppart SA (2005) Imaging magnetically labeled cells with magnetomotive optical coherence tomography. Opt Lett 30:747–749

    Article  PubMed  Google Scholar 

  22. Oldenburg AL, Crecea V, Rinne SA, Boppart SA (2008) Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues. Opt Express 16:11525–11539

    PubMed  CAS  Google Scholar 

  23. John R, Chaney EJ, Boppart SA (2010) Dynamics of magnetic nanoparticle-based contrast agents in tissues tracked using magnetomotive optical coherence tomography. IEEE J Sel Top Quantum Electron 16:691–697

    Article  CAS  Google Scholar 

  24. John R, Rezaeipoor R, Adie SG et al (2010) In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes. Proc Natl Acad Sci USA 107:8085–8090

    Article  PubMed  CAS  Google Scholar 

  25. Unger EC, McCreery TP, Sweitzer RH (1998) A novel ultrasound contrast agent with therapeutic properties. Acad Radiol 5:S247–S249

    Article  PubMed  Google Scholar 

  26. Unger EC, McCreery TP, Sweitzer RH et al (1998) Acoustically active lipospheres containing paclitaxel: a new therapeutic ultrasound contrast agent. Invest Radiol 33:886–892

    Article  PubMed  CAS  Google Scholar 

  27. Eliceiri BP, Cheresh DA (1999) The role of alpha v beta 3 integrins during angiogenesis. J Clin Invest 103:1227–1230

    Article  PubMed  CAS  Google Scholar 

  28. Hoshiga M, Alpers CE, Smith LL et al (1995) Alpha-v beta-3 integrin expression in normal and atherosclerotic artery. Circ Res 77:1129–1135

    PubMed  CAS  Google Scholar 

  29. Pasqualini R, Koivunen E, Ruoslahti E (1997) α v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 15:542–546

    Article  PubMed  CAS  Google Scholar 

  30. Winter PM, Morawski AM, Caruthers SD et al (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v) beta(3)-integrin-targeted nanoparticles. Circulation 108:2270–2274

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by grants from the National Institutes of Health (Roadmap Initiative, NIBIB R21 EB005321, NIBIB R01 EB009073, and NCI RC1 CA147096).

Conflicts of Interest

Stephen A. Boppart receives royalties related to optical coherence tomography for patents licensed by the Massachusetts Institute of Technology. He is also co-founder of Diagnostic Photonics, Inc., a company developing Interferometric Synthetic Aperture Microscopy for medical applications, and he receives funding for sponsored research projects from Welch Allyn, Inc. and Samsung, Inc., related to optical imaging technologies. All other authors report no real or perceived conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Boppart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

John, R., Nguyen, F.T., Kolbeck, K.J. et al. Targeted Multifunctional Multimodal Protein-Shell Microspheres as Cancer Imaging Contrast Agents. Mol Imaging Biol 14, 17–24 (2012). https://doi.org/10.1007/s11307-011-0473-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-011-0473-7

Key words

Navigation