Skip to main content

Advertisement

Log in

In Situ Labeling and Magnetic Resonance Imaging of Transplanted Human Hepatic Stem Cells

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The purpose is to address the problem in magnetic resonance imaging (MRI) of contrast agent dilution.

Procedures

In situ magnetic labeling of cells and MRI were used to assess distribution and growth of human hepatic stem cells (hHpSCs) transplanted into severe combined immunodeficiency (SCID)/non-obese diabetic (NOD) mice. It was done with commercially available magnetic microbeads coupled to an antibody to a surface antigen, epithelial cell adhesion molecule (EpCAM), uniquely expressed in the liver by hepatic progenitors.

Results

We validated the microbead connection to cells and related MRI data to optical microscopy observations in order to develop a means to quantitatively estimate cell numbers in the aggregates detected. Cell counts of hHpSCs at different times post-transplantation revealed quantifiable evidence of cell engraftment and expansion.

Conclusions

This magnetic labeling methodology can be used with any antibody coupled to a magnetic particle to target any surface antigen that distinguishes transplanted cells from host cells, thus facilitating studies that define methods and strategies for clinical cell therapy programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AFP:

α-Fetoprotein

ALB:

Albumin

CK:

Cytokeratin

EpCAM:

Epithelial cell adhesion molecule

HDM:

Hormonally defined medium

hHB:

Human hepatoblast

hHpSC:

Human hepatic stem cell

KM:

Kubota’s medium

MACS:

Magnetically activated cell sorting

MRI:

Magnetic resonance imaging

References

  1. Susick R, Moss N, Kubota H et al (2002) Hepatic progenitors and strategies for liver cell therapies. Ann N Y Acad Sci 943:398–419

    Google Scholar 

  2. Ito M, Nagata H, Miyakawa S, Fox IJ (2009) Review of hepatocyte transplantation. J Hepatobiliary Pancreat Surg 16:97–100

    Article  PubMed  Google Scholar 

  3. Khan AA, Shaik MV, Parveen N et al (2010) Human fetal liver-derived stem cell transplantation as supportive modality in the management of end-stage decompensated liver cirrhosis. Cell Transpl, in press

  4. Bulte JW, Douglas T, Witwer B et al (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147

    Article  PubMed  CAS  Google Scholar 

  5. Lewin M, Carlesso N, Tung CH et al (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414

    Article  PubMed  CAS  Google Scholar 

  6. Gubin AN, Reddy B, Njoroge JM, Miller JL (1997) Long-term, stable expression of green fluorescent protein in mammalian cells. Biochem Biophys Res Commun 236:347–350

    Article  PubMed  CAS  Google Scholar 

  7. Song S, Witek RP, Lu Y et al (2004) Ex vivo transduced liver progenitor cells as a platform for gene therapy in mice. Hepatology 40:918–924

    PubMed  CAS  Google Scholar 

  8. Gambhir SS, Barrio JR, Herschman HR, Phelps ME (1999) Assays for noninvasive imaging of reporter gene expression. Nucl Med Biol 26:481–490

    Article  PubMed  CAS  Google Scholar 

  9. Gupta S, Inada M, Joseph B, Kumaran V, Benten D (2004) Emerging insites into liver-directed cell therapy for genetic and acquired disorders. Transpl Immunol 12:289–302

    Article  PubMed  CAS  Google Scholar 

  10. Wang LJ, Chen YM, George D et al (2002) Engraftment assessment in human and mouse liver tissue after sex-mismatched liver cell transplantation by real-time quantitative PCR for Y chromosome sequences. Liver Transpl 8:822–828

    Article  PubMed  Google Scholar 

  11. Mahieu-Caputo D, Allain J, Branger J et al (2004) Repopulation of athymic mouse liver by cryopreserved early human fetal hepatoblasts. Human Gene Therapy 15:1219–1228

    Article  PubMed  CAS  Google Scholar 

  12. Turner R, Gerber D, Reid LM (2010) Transplantation of cells from solid organs requires grafting protocols. Transplantation, in press

  13. Schmelzer E, Zhang L, Bruce A et al (2007) Human hepatic stem cells from fetal and postnatal donors. J Exp Med 204:1973–1987, the authors are equal contributors

    Article  PubMed  CAS  Google Scholar 

  14. Wang Y, Yao H-l, Barbier C et al (2010) Lineage-dependent epithelial–mesenchymal paracrine signals dictate growth versus differentiation of human hepatic stem cells to adult fates. Hepatology, in press

  15. Schmelzer E, Wauthier E, Reid LM (2006) Phenotypes of pluripotent human hepatic progenitors. Stem Cell 24:1852–1858

    Article  CAS  Google Scholar 

  16. Sicklick JK, Li YX, Melhem A et al (2006) Hedgehog signaling maintains resident hepatic progenitors throughout life. [co-senior authors]. Am J Physiol Gastrointest Liver Physiol 290:G859–G870

    Article  PubMed  CAS  Google Scholar 

  17. Schmelzer E, Reid LM (2009) Telomerase activity in human hepatic stem cells, hepatoblasts and hepatocytes from neonatal, pediatric, adult and geriatric donors. Eur J Hepatol Gastroenterol 21:1191–1198

    Article  CAS  Google Scholar 

  18. Schmelzer E, Wauthier E, Melhem A et al (2006) Hepatic stem cells. In: Potten C, Clarke R, Wilson J, Renehan A (eds) Tissue stem cells. Taylor & Francis, NY, pp 161–214

    Google Scholar 

  19. Zhang L, Theise N, Chua M, Reid LM (2008) Human hepatic stem cells and hepatoblasts: symmetry between liver development and liver regeneration. Hepatology 48:1598–1607

    Article  PubMed  CAS  Google Scholar 

  20. Turner WS, Seagle C, Galanko J et al (2008) Metabolomic footprinting of human hepatic stem cells and hepatoblasts cultured in engineered hyaluronan-matrix hydrogel scaffolds. Stem Cell 26:1547–1555

    Article  CAS  Google Scholar 

  21. Kubota H, Reid LM (2000) Clonogenic hepatoblasts, common precursors for hepatocytic and biliary lineages, are lacking classical major histocompatibility complex class I antigen. Proc Natl Acad Sci USA 97:12132

    Article  PubMed  CAS  Google Scholar 

  22. McClelland R, Wauthier E, Zhang L et al (2008) Ex vivo conditions for self-replication of human hepatic stem cells. Tissue Eng 14:1–11

    Article  Google Scholar 

  23. Wauthier E, McClelland R, Turner W et al (2008) Hepatic stem cells and hepatoblasts: identification, isolation and ex vivo maintenance. Methods Cell Biol, Methods for Stem Cells 86:137–225

    CAS  Google Scholar 

  24. Kubota H, Yao H, Reid LM (2007) Identification and characterization of vitamin A-storing cells in fetal liver. Stem Cell 25:2339–2349

    Article  CAS  Google Scholar 

  25. Taylor AE, Granger DW (1984) Exchange of macromolecules across microcapillaries. In: Rankin EM, Michel CC (eds) Section 2. The cardiovascular system, microcirulation: Part 1. Handbook of physiology, vol 4. American Physiological Society, Bethesda, MD, pp 467–520

    Google Scholar 

  26. Yamashita Y, Ji J, Budhu A et al (2009) Wnt/β-catenin signaling regulates cancer initiating cells (EpCAM+ AFP+) with stem cell features and metastatic activities in hepatocellular carcinoma. Gastroenterology 136:1012–1024

    Article  PubMed  CAS  Google Scholar 

  27. Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea—a paradigm shift. Cancer Res 66:1883–1890

    Article  PubMed  CAS  Google Scholar 

  28. Benhaj K, Akcali KC, Ozturk M (2006) Redundant expression of canonical Wnt ligands in human breast cancer cell lines. Oncol Rep 15:701–707

    PubMed  CAS  Google Scholar 

  29. Schmelzer E, Reid LM (2008) EpCAM expression in normal, non-pathological tissues. Frontiers Biosci 13:3096–3100

    Article  CAS  Google Scholar 

  30. Bulte JW, Duncan ID, Frank JA (2002) In vivo magnetic resonance tracking of magnetically labeled cells after transplantation. J Cereb Blood Flow Metab 22:899–907

    Article  PubMed  Google Scholar 

  31. Hill JM, Ma MR, Dick AJ et al (2003) Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 108:1009–1014

    Article  PubMed  Google Scholar 

  32. Walter GA, Cahill KS, Huard J et al (2004) Noninvasive monitoring of stem cell transfer for muscle disorders. Magn Reson Med 51:273–277

    Article  PubMed  Google Scholar 

  33. Maxwell DJ, Bonde J, Hess DA et al (2008) Fluorophore-conjugated iron oxide nanoparticle labeling and analysis of engrafting human hematopoietic stem cells. Stem Cells 26:517–524

    Article  PubMed  CAS  Google Scholar 

  34. Walczak P, Kedziorek DA, Gilad AA, Lin S, Bulte JWM (2005) Instant MR labeling of stem cells using magnetoelectroporation. Magn Reson Med 54:769–774

    Article  PubMed  CAS  Google Scholar 

  35. Partlow KC, Chen J, Brant JA et al (2007) 19F magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorcarbon nanobeacons. FASEB J 21:1647–1654

    Article  PubMed  CAS  Google Scholar 

  36. Modo M, Cash D, Mellodew K et al (2007) Tracking transplanted stem cell migration using bifunctional, contrast agent enhanced magnetic resonance imaging. NeuroImage 17:803–811

    Article  Google Scholar 

  37. Naldini L, Blomer U, Gallay P, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of postmitotic cells by a lentiviral vector. Science 272:263–267

    Article  PubMed  CAS  Google Scholar 

  38. Gropp M, Itsykson P, Singer O et al (2003) Stable genetic modification of human embryonic stem cells by lentiviral vectors. Mol Ther 7:281–287

    Article  PubMed  CAS  Google Scholar 

  39. Blaese R (2007) What is the status of gene therapy for primary immunodeficiency? Immunol Res 38:274–284

    Article  PubMed  CAS  Google Scholar 

  40. Jansen JF, Shamblott MJ, van Zijl PC et al (2006) Stem cell profiling by nuclear magnetic resonance spectroscopy. Magn Res Med 56:666–670

    Article  CAS  Google Scholar 

  41. Holmes E, Foxall PJD, Spraul M, Duncan Farrant R, Nicholson JK, Lindon JC (1997) 750 MHz 1H NMR spectroscopy characterisation of the complex metabolic pattern of urine from patients with inborn errors of metabolism: 2-hydroxyglutaric aciduria and maple syrup urine disease. J Pharm Biomed Anal 15:1647–1659

    Article  PubMed  CAS  Google Scholar 

  42. Cohen BH, Buiy E, Packer RJ, Sutton LN, Bilaniuk LT, Zimmerman RA (1989) Gadolinium–DTPA-enhanced magnetic resonance imaging in childhood brain tumors. Neurology 39:1178

    PubMed  CAS  Google Scholar 

  43. Schafer R, Kehlbach R, Wiskirchen J et al (2007) Transferrin receptor upregulation: in vitro labeling of rat mesenchymal stem cells with superparametic iron oxide. Radiology 244:514–523

    Article  PubMed  Google Scholar 

  44. Ji J, Yamashita T, Budhu A et al (2009) Identification of a conserved microRNA-181 family by genome-wide screening as a critical player in hepatic cancer stem cell. Hepatology 50:880–892

    Article  Google Scholar 

Download references

Acknowledgements

Technical and administrative support was provided by Lucendia English, Victoria Morgan, and Dr. Claire Barbier. The microscopy was done in the Michael Hooker Confocal Microscope Facility at UNC (Dr. Michael Chua, director) and the electron microscopy in the Microscope Facility (Dr. Robert Bagnell, director). We thank Dr. Sharon Lubkin for a critical evaluation of the paper and Dr. Claire Barbier for editing the figures.

This work was funded primarily by a US Department of Energy (DOE) grant (DE-FG02-02ER-63477). It derived also from grants from the North Carolina Biotechnology Center, Vesta Therapeutics (Bethesda, MD), the National Institutes of Health (NIH; AA014243 and IP30-DK065933), the National Institute of Diabetes and Digestive and Kidney Diseases (DK34987), and the National Cancer Institute (CA016086). All of the imaging was done in the Duke Center for In Vivo Microscopy (Dr. G.A. Johnson, director), an NIH/National Center for Research Resources Biomedical Technology Resource Center (P41 RR005959) and Small Animal Imaging Resource Program (U24 CA092656).

Conflict of Interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lola M. Reid.

Additional information

Significance:

We have developed a novel method for post-transplantation magnetic labeling of cells. The technique overcomes the problem of fading MRI contrast that occurs with transplanting pre-labeled cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McClelland, R., Wauthier, E., Tallheden, T. et al. In Situ Labeling and Magnetic Resonance Imaging of Transplanted Human Hepatic Stem Cells. Mol Imaging Biol 13, 911–922 (2011). https://doi.org/10.1007/s11307-010-0422-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-010-0422-x

Key words

Navigation