Skip to main content

Advertisement

Log in

Early Treatment Response Evaluation in Patients with Diffuse Large B-Cell Lymphoma—A Pilot Study Comparing Volumetric MRI and PET/CT

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study is to evaluate the time course of early chemotherapy response in patients with aggressive non-Hodgkin's lymphoma (NHL) by magnetic resonance imaging (MRI) and positron emission tomography/computed tomography (PET/CT).

Procedures

Eight patients with histologically proven aggressive NHL were imaged by MRI and PET/CT before treatment (E1), 1 week (E2), and two cycles (E3) after chemotherapy.

Results

The mean tumor volume on MRI was 276 mL at baseline; it decreased 58% at E2 (p < 0.05) and 65% further at E3 (p < 0.05), giving a total decrease of 84% (p < 0.05). All the imaged pre-therapy tumors were strongly positive on PET/CT, with a mean maximum standardized uptake value (SUVmax) of 20. The SUVmax decreased 60% at E2 (p < 0.05) and 59% further at E3 (p < 0.05), giving a total decrease of 83% (p < 0.05). The active tumor burden (mean 229 mL) decreased 66% at E2 (p < 0.05). The tumor volume on MRI correlated with the active tumor volume on fused PET/CT images in the same region of interest at both E1 and E2 (r = 0.88, p < 0.01, respectively).

Conclusions

Standard chemotherapy causes rapid decrease of both tumor metabolic activity and volume as early as 1 week, which continues to decline during therapy. Both volumetric MRI and PET/CT are valuable tools for early treatment response evaluation of aggressive NHL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cheson BD, Horning SJ, Coiffier B et al (1999) Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI Sponsored International Working Group. J Clin Oncol 17:1244–1253

    PubMed  CAS  Google Scholar 

  2. Cheson BD, Pfistner B, Juweid ME et al (2007) Revised response criteria for malignant lymphoma. J Clin Oncol 25:579–586

    Article  PubMed  Google Scholar 

  3. Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150S

    Article  PubMed  CAS  Google Scholar 

  4. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  5. Schoder H, Noy A, Gonen M et al (2005) Intensity of 18fluorodeoxyglucose uptake in positron emission tomography distinguishes between indolent and aggressive non-Hodgkin’s lymphoma. J Clin Oncol 23:4643–4651

    Article  PubMed  Google Scholar 

  6. Spaepen K, Stroobants S, Dupont P et al (2002) Early restaging positron emission tomography with (18)F-fluorodeoxyglucose predicts outcome in patients with aggressive non-Hodgkin’s lymphoma. Ann Oncol 13:1356–1363

    Article  PubMed  CAS  Google Scholar 

  7. Ngeow JY, Quek RH, Ng DC et al (2009) High SUV uptake on FDG-PET/CT predicts for an aggressive B-cell lymphoma in a prospective study of primary FDG-PET/CT staging in lymphoma. Ann Oncol 20:1543–1547

    Article  PubMed  CAS  Google Scholar 

  8. Miller AB, Hoogstraten B, Staquet M, Winkler A (1981) Reporting results of cancer treatment. Cancer 47:207–214

    Article  PubMed  CAS  Google Scholar 

  9. Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216

    Article  PubMed  CAS  Google Scholar 

  10. Therasse P, Eisenhauer EA, Verweij J (2006) RECIST revisited: a review of validation studies on tumour assessment. Eur J Cancer 42:1031–1039

    Article  PubMed  CAS  Google Scholar 

  11. Rossi M, Dastidar P, Pertovaara H et al (2009) Response analysis of non-hodgkin lymphoma using magnetic resonance imaging-based volumes. J Comput Assist Tomogr 33:466–474

    Article  PubMed  Google Scholar 

  12. Ghanem N, Lohrmann C, Engelhardt M et al (2006) Whole-body MRI in the detection of bone marrow infiltration in patients with plasma cell neoplasms in comparison to the radiological skeletal survey. Eur Radiol 16:1005–1014

    Article  PubMed  Google Scholar 

  13. Schmidt GP, Baur-Melnyk A, Herzog P et al (2005) High-resolution whole-body magnetic resonance image tumor staging with the use of parallel imaging versus dual-modality positron emission tomography-computed tomography: experience on a 32-channel system. Invest Radiol 40:743–753

    Article  PubMed  Google Scholar 

  14. Antoch G, Vogt FM, Freudenberg LS et al (2003) Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. Jama 290:3199–3206

    Article  PubMed  CAS  Google Scholar 

  15. Oken MM, Creech RH, Tormey DC et al (1982) Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol 5:649–655

    Article  PubMed  CAS  Google Scholar 

  16. Heinonen T, Dastidar P, Kauppinen P, Malmivuo J, Eskola H (1998) Semi-automatic tool for segmentation and volumetric analysis of medical images. Med Biol Eng Comput 36:291–296

    Article  PubMed  CAS  Google Scholar 

  17. Heinonen T, Dastidar P, Eskola H, Frey H, Ryymin P, Laasonen E (1998) Applicability of semi-automatic segmentation for volumetric analysis of brain lesions. J Med Eng Technol 22:173–178

    Article  PubMed  CAS  Google Scholar 

  18. Dastidar P, Heinonen T, Vahvelainen T, Elovaara I, Eskola H (1999) Computerised volumetric analysis of lesions in multiple sclerosis using new semi-automatic segmentation software. Med Biol Eng Comput 37:104–107

    Article  PubMed  CAS  Google Scholar 

  19. Saarinen T, Dastidar P, Peltola R et al (2005) Evaluation of the treatment outcome of lymphoma patients after the first treatment using magnetic resonance imaging based volumetry. The 3 rd European Medical and Biological Engineering Conference EMBEC 05, Prague, Czech Republik. IFMBE Proceedings. Vol. 11

  20. (1993) A predictive model for aggressive non-Hodgkin’s lymphoma. The International Non-Hodgkin’s Lymphoma Prognostic Factors Project. N Engl J Med 329:987–994

  21. Cazaentre T, Morschhauser F, Vermandel M et al (2010) Pre-therapy 18F-FDG PET quantitative parameters help in predicting the response to radioimmunotherapy in non-Hodgkin lymphoma. Eur J Nucl Med Mol Imaging 37:494–504

    Article  PubMed  CAS  Google Scholar 

  22. Haioun C, Itti E, Rahmouni A et al (2005) [18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) in aggressive lymphoma: an early prognostic tool for predicting patient outcome. Blood 106:1376–1381

    Article  PubMed  CAS  Google Scholar 

  23. Mikhaeel NG, Hutchings M, Fields PA, O’Doherty MJ, Timothy AR (2005) FDG-PET after two to three cycles of chemotherapy predicts progression-free and overall survival in high-grade non-Hodgkin lymphoma. Ann Oncol 16:1514–1523

    Article  PubMed  CAS  Google Scholar 

  24. Yamane T, Daimaru O, Ito S et al (2004) Decreased 18F-FDG uptake 1 day after initiation of chemotherapy for malignant lymphomas. J Nucl Med 45:1838–1842

    PubMed  Google Scholar 

  25. Kostakoglu L, Coleman M, Leonard JP, Kuji I, Zoe H, Goldsmith SJ (2002) PET predicts prognosis after 1 cycle of chemotherapy in aggressive lymphoma and Hodgkin’s disease. J Nucl Med 43:1018–1027

    PubMed  Google Scholar 

  26. Torizuka T, Nakamura F, Kanno T et al (2004) Early therapy monitoring with FDG-PET in aggressive non-Hodgkin’s lymphoma and Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging 31:22–28

    Article  PubMed  Google Scholar 

  27. Romer W, Hanauske AR, Ziegler S et al (1998) Positron emission tomography in non-Hodgkin’s lymphoma: assessment of chemotherapy with fluorodeoxyglucose. Blood 91:4464–4471

    PubMed  CAS  Google Scholar 

  28. Schaefer NG, Strobel K, Taverna C, Hany TF (2007) Bone involvement in patients with lymphoma: the role of FDG-PET/CT. Eur J Nucl Med Mol Imaging 34:60–67

    Article  PubMed  Google Scholar 

  29. Moulin-Romsee G, Hindie E, Cuenca X et al (2010) (18)F-FDG PET/CT bone/bone marrow findings in Hodgkin’s lymphoma may circumvent the use of bone marrow trephine biopsy at diagnosis staging. Eur J Nucl Med Mol Imaging 37:1095–1105

    Article  PubMed  Google Scholar 

  30. Schmidt GP, Reiser MF, Baur-Melnyk A (2009) Whole-body MRI for the staging and follow-up of patients with metastasis. Eur J Radiol 70:393–400

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Biomedical Image Quantification/University Alliance Finland and the Elna Savolainen Fund.

Conflict of interest

We have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingchen Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Dastidar, P., Pertovaara, H. et al. Early Treatment Response Evaluation in Patients with Diffuse Large B-Cell Lymphoma—A Pilot Study Comparing Volumetric MRI and PET/CT. Mol Imaging Biol 13, 785–792 (2011). https://doi.org/10.1007/s11307-010-0404-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-010-0404-z

Key Words

Navigation