Molecular Imaging and Biology

, Volume 12, Issue 5, pp 463–467 | Cite as

AuNP-DG: Deoxyglucose-Labeled Gold Nanoparticles as X-ray Computed Tomography Contrast Agents for Cancer Imaging

  • Bulent Aydogan
  • Ji Li
  • Tijana Rajh
  • Ahmed Chaudhary
  • Steven J. Chmura
  • Charles Pelizzari
  • Christian Wietholt
  • Metin Kurtoglu
  • Peter Redmond
Rapid Communication

Abstract

Purpose

To study the feasibility of using 2-deoxy-d-glucose (2-DG)-labeled gold nanoparticle (AuNP-DG) as a computed tomography (CT) contrast agent with tumor targeting capability through in vitro experiments.

Procedures

Gold nanoparticles (AuNP) were fabricated and were conjugated with 2-deoxy-d-glucose. The human alveolar epithelial cancer cell line, A-549, was chosen for the in vitro cellular uptake assay. Two groups of cell samples were incubated with the AuNP-DG and the unlabeled AuNP, respectively. Following the incubation, the cells were washed with sterile PBS to remove the excess gold nanoparticles and spun to cell pellets using a centrifuge. The cell pellets were imaged using a microCT scanner immediately after the centrifugation. The reconstructed CT images were analyzed using a commercial software package.

Results

Significant contrast enhancement in the cell samples incubated with the AuNP-DG with respect to the cell samples incubated with the unlabeled AuNP was observed in multiple CT slices.

Conclusions

Results from this study demonstrate enhanced uptake of 2-DG-labeled gold nanoparticle by cancer cells in vitro and warrant further experiments to study the exact molecular mechanism by which the AuNP-DG is internalized and retained in the tumor cells.

Key words

Gold nanoparticle Contrast-enhanced CT 2-Deoxy-d-glucose Cancer imaging Tumor targeting 

References

  1. 1.
    Weissleder R (2006). Science 312:1168–1171CrossRefPubMedGoogle Scholar
  2. 2.
    Lee TY (2002) Trends in Biotech 20:S3–S10CrossRefGoogle Scholar
  3. 3.
    Kao CY, Hoffman EA, Beck KC et al (2003) Acad Radiol 10:475–483CrossRefPubMedGoogle Scholar
  4. 4.
    Schmiedl UP, Krause W, Leike J et al (1999) Acad Radiol 6:164–169CrossRefPubMedGoogle Scholar
  5. 5.
    Fruman SA, Harned RK II, Marcus D et al (1994) Acad Radiol 1:151–153CrossRefPubMedGoogle Scholar
  6. 6.
    Vera DR, Mattrey RF (2002) Acad Radiol 9:784–792CrossRefPubMedGoogle Scholar
  7. 7.
    Bonvento M, Moore W, Button T et al (2003) Acad Radiol 13:979–985CrossRefGoogle Scholar
  8. 8.
    Miyamoto A, Okimoto H, Shinohara H et al (2006) Eur Radiol 16:1050–1053CrossRefPubMedGoogle Scholar
  9. 9.
    Yu SB, Watson AD (1999) Chem Rev 99:2352–2378CrossRefGoogle Scholar
  10. 10.
    Rabin O, Manuel Perez J, Grimm J, Wojtkiewicz G, Weissleder R (2006) Nat Mater 5:118–122CrossRefGoogle Scholar
  11. 11.
    Qian X, Peng XH, Ansari DO et al (2008) Nat Biotechnol 26:83–90CrossRefPubMedGoogle Scholar
  12. 12.
    Popovtzer R, Agrawal A, Kotov NA et al (2008) Nano Lett 8:4593–4596CrossRefPubMedGoogle Scholar
  13. 13.
    Cai QY, Kim SH, Choi KS, Kim et al (2007) Invest. Radiol 42:797–806Google Scholar
  14. 14.
    Kim D, Park S, Lee JH et al (2007) J Am Chem Soc 129:7661–7665CrossRefPubMedGoogle Scholar
  15. 15.
    Hainfeld JF, Slatkin DN, Focella TMet al (2006) Br J Radiol 79:248–253CrossRefPubMedGoogle Scholar
  16. 16.
    Hayat MA (1991) Colloidal gold: principles, methods and applications, volume 1. Academic, San DiegoGoogle Scholar
  17. 17.
    Slot JW, Geuze HJ (1985) Eur J Cell Biol 38:87–93PubMedGoogle Scholar
  18. 18.
    Hermanson GT (2008) Bioconjugate techniques, 2nd ed. Elsevier/Academic Press, LondonGoogle Scholar
  19. 19.
    Ambrose J, Hounsfield G (1973) Br J Radiol 46:1016–1047CrossRefGoogle Scholar
  20. 20.
    Su H, Bodenstein C, Dumont R et al (2006) Clin Cancer Res 12:5659–5667CrossRefPubMedGoogle Scholar
  21. 21.
    Chung JK, Lee YJ, Kim SK et al (2004) Nucl Med Commun 25:11–17CrossRefPubMedGoogle Scholar
  22. 22.
    Barnett JEG, Holman GD, Munday KA (1973) Biochem J 131:211–221PubMedGoogle Scholar
  23. 23.
    Lampidis TJ, Kurtoglu M et al (2004) Cancer Chemother Pharmacol 53:116–122CrossRefPubMedGoogle Scholar
  24. 24.
    Landau BR, Spring-Robinson CL, Muzic RF Jr et al (2007) Am J Physiol Endocrinol Metab 293:E237–E245CrossRefPubMedGoogle Scholar
  25. 25.
    Etzioni R, Urban N, Ramsey S et al (2003) Nat Rev Cancer 3:242–252CrossRefGoogle Scholar

Copyright information

© Academy of Molecular Imaging and Society for Molecular Imaging 2010

Authors and Affiliations

  • Bulent Aydogan
    • 1
  • Ji Li
    • 1
  • Tijana Rajh
    • 2
  • Ahmed Chaudhary
    • 1
  • Steven J. Chmura
    • 1
  • Charles Pelizzari
    • 1
  • Christian Wietholt
    • 3
    • 4
  • Metin Kurtoglu
    • 5
  • Peter Redmond
    • 2
  1. 1.Department of Radiation and Cellular OncologyThe University of ChicagoChicagoUSA
  2. 2.Center for Nanoscale MaterialsArgonne National LaboratoryArgonneUSA
  3. 3.Department of RadiologyThe University of ChicagoChicagoUSA
  4. 4.Department of Medicine/CardiologyThe University of ChicagoChicagoUSA
  5. 5.Department of Hematology and Medical OncologyEmory University Winship Cancer InstituteAtlantaUSA

Personalised recommendations