Skip to main content

Advertisement

Log in

Bioluminescence Imaging in Mouse Models Quantifies β Cell Mass in the Pancreas and After Islet Transplantation

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

We developed a mouse model that enables non-invasive assessment of changes in β cell mass.

Procedures

We generated a transgenic mouse expressing luciferase under control of the mouse insulin I promoter [mouse insulin promoter-luciferase-Vanderbilt University (MIP-Luc-VU)] and characterized this model in mice with increased or decreased β cell mass and after islet transplantation.

Results

Streptozotocin-induced, diabetic MIP-Luc-VU mice had a progressive decline in bioluminescence that correlated with a decrease in β cell mass. MIP-Luc-VU animals fed a high-fat diet displayed a progressive increase in bioluminescence that reflected an increase in β cell mass. MIP-Luc-VU islets transplanted beneath the renal capsule or into the liver emitted bioluminescence proportional to the number of islets transplanted and could be imaged for more than a year.

Conclusions

Bioluminescence in the MIP-Luc-VU mouse model is proportional to β cell mass in the setting of increased and decreased β cell mass and after transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MIP:

Mouse insulin promoter

Luc:

Luciferase

MIP-Luc-VU:

Mouse insulin promoter-luciferase-Vanderbilt University

MRI:

Magnetic resonance imaging

PET:

Positron emission tomography

BLI:

Bioluminescence imaging

pdx1 :

Pancreatic-duodenal homeobox factor-1

NOD-scid:

non-obese diabetic-severe combined immunodeficiency

FVB:

Friend leukemia Virus B strain

IBMX:

Isobutyl methyl xanthine

STZ:

Streptozotocin

ROI:

Region of interest

PBS:

Phosphate-buffered saline

FBS:

Fetal bovine serum

References

  1. Robertson RP (2004) Islet transplantation as a treatment for diabetes—a work in progress. N Engl J Med (USA) 350:694–705

    Article  CAS  Google Scholar 

  2. Shapiro AM, Lakey JR, Ryan EA et al (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med (USA) 343:230–238

    Article  CAS  Google Scholar 

  3. McCulloch DK, Koerker DJ, Kahn SE, Bonner-Weir S, Palmer JP (1991) Correlations of in vivo beta-cell function tests with beta-cell mass and pancreatic insulin content in streptozocin-administered baboons. Diabetes (USA) 40:673–679

    Article  CAS  Google Scholar 

  4. Davalli AM, Ogawa Y, Scaglia L et al (1995) Function, mass, and replication of porcine and rat islets transplanted into diabetic nude mice. Diabetes (USA) 44:104–111

    Article  CAS  Google Scholar 

  5. Davalli AM, Ogawa Y, Ricordi C et al (1995) A selective decrease in the beta cell mass of human islets transplanted into diabetic nude mice. Transplantation (USA) 59:817–820

    CAS  Google Scholar 

  6. Larsen MO, Rolin B, Wilken M, Carr RD, Gotfredsen CF (2003) Measurements of insulin secretory capacity and glucose tolerance to predict pancreatic beta-cell mass in vivo in the nicotinamide/streptozotocin Gottingen minipig, a model of moderate insulin deficiency and diabetes. Diabetes (USA) 52:118–123

    Article  CAS  Google Scholar 

  7. Kjems LL, Kirby BM, Welsh EM et al (2001) Decrease in beta-cell mass leads to impaired pulsatile insulin secretion, reduced postprandial hepatic insulin clearance, and relative hyperglucagonemia in the minipig. Diabetes (USA) 50:2001–2012

    Article  CAS  Google Scholar 

  8. Saito K, Yaginuma N, Takahashi T (1979) Differential volumetry of A, B and D cells in the pancreatic islets of diabetic and nondiabetic subjects. Tohoku J Exp Med (USA) 129:273–283

    Article  CAS  Google Scholar 

  9. Bonner-Weir S, Trent DF, Weir GC (1983) Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J Clin Invest (USA) 71:1544–1553

    Article  CAS  Google Scholar 

  10. Virostko J, Jansen ED, Powers AC (2006) Current status of imaging pancreatic islets. Curr Diab Rep (USA) 6:328–332

    Article  Google Scholar 

  11. Lacy PE (1967) The pancreatic beta cell. Structure and function. N Engl J Med (USA) 276:187–195

    CAS  Google Scholar 

  12. Paty BW, Bonner-Weir S, Laughlin MR, McEwan AJ, Shapiro AM (2004) Toward development of imaging modalities for islets after transplantation: insights from the National Institutes of Health Workshop on Beta Cell Imaging. Transplantation (USA) 77:1133–1137

    Article  Google Scholar 

  13. Barnett BP, Arepally A, Karmarkar PV et al (2007) Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat Med (USA) 13:986–991

    CAS  Google Scholar 

  14. Biancone L, Crich SG, Cantaluppi V et al (2007) Magnetic resonance imaging of gadolinium-labeled pancreatic islets for experimental transplantation. NMR Biomed (USA) 20:40–48

    Article  Google Scholar 

  15. Evgenov NV, Medarova Z, Dai G, Bonner-Weir S, Moore A (2006) In vivo imaging of islet transplantation. Nat Med (USA) 12:144–148

    CAS  Google Scholar 

  16. Gimi B, Leoni L, Oberholzer J et al (2006) Functional MR microimaging of pancreatic beta-cell activation. Cell Transplant (USA) 15:195–203

    Article  Google Scholar 

  17. Jirak D, Kriz J, Herynek V et al (2004) MRI of transplanted pancreatic islets. Magn Reson Med (USA) 52:1228–1233

    Article  Google Scholar 

  18. Tai JH, Foster P, Rosales A et al (2006) Imaging islets labeled with magnetic nanoparticles at 1.5 Tesla. Diabetes (USA) 55:2931–2938

    Article  CAS  Google Scholar 

  19. Zheng Q, Dai H, Merritt ME et al (2005) A new class of macrocyclic lanthanide complexes for cell labeling and magnetic resonance imaging applications. J Am Chem Soc (USA) 127:16178–16188

    Article  CAS  Google Scholar 

  20. Lu Y, Dang H, Middleton B et al (2006) Noninvasive imaging of islet grafts using positron-emission tomography. Proc Natl Acad Sci U S A (USA) 103:11294–11299

    Article  CAS  Google Scholar 

  21. Toso C, Zaidi H, Morel P et al (2005) Positron-emission tomography imaging of early events after transplantation of islets of Langerhans. Transplantation (USA) 79:353–355

    Article  Google Scholar 

  22. Kim SJ, Doudet DJ, Studenov AR et al (2006) Quantitative micro positron emission tomography (PET) imaging for the in vivo determination of pancreatic islet graft survival. Nat Med (USA) 12:1423–1428

    CAS  Google Scholar 

  23. Clark PB, Gage HD, Brown-Proctor C et al (2004) Neurofunctional imaging of the pancreas utilizing the cholinergic PET radioligand [18F]4-fluorobenzyltrozamicol. Eur J Nucl Med Mol Imaging (USA) 31:258–260

    Article  CAS  Google Scholar 

  24. Moore A, Bonner-Weir S, Weissleder R (2001) Noninvasive in vivo measurement of beta-cell mass in mouse model of diabetes. Diabetes (USA) 50:2231–2236

    Article  CAS  Google Scholar 

  25. Ladriere L, Malaisse-Lagae F, Alejandro R, Malaisse WJ (2001) Pancreatic fate of a (125) I-labelled mouse monoclonal antibody directed against pancreatic B-cell surface ganglioside(s) in control and diabetic rats. Cell Biochem Funct (USA) 19:107–115

    Article  CAS  Google Scholar 

  26. Schneider S, Feilen PJ, Schreckenberger M et al (2005) In vitro and in vivo evaluation of novel glibenclamide derivatives as imaging agents for the non-invasive assessment of the pancreatic islet cell mass in animals and humans. Exp Clin Endocrinol Diabetes (USA) 113:388–395

    Article  CAS  Google Scholar 

  27. Souza F, Simpson N, Raffo A et al (2006) Longitudinal noninvasive PET-based beta cell mass estimates in a spontaneous diabetes rat model. J Clin Invest (USA) 116:1506–1513

    Article  CAS  Google Scholar 

  28. Simpson NR, Souza F, Witkowski P et al (2006) Visualizing pancreatic beta-cell mass with [11C]DTBZ. Nucl Med Biol (USA) 33:855–864

    Article  CAS  Google Scholar 

  29. Contag CH, Spilman SD, Contag PR et al (1997) Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol (USA) 66:523–531

    Article  CAS  Google Scholar 

  30. Virostko J, Chen Z, Fowler M et al (2004) Factors influencing quantification of in vivo bioluminescence imaging: application to assessment of pancreatic islet transplants. Mol Imaging (USA) 3:333–342

    Article  Google Scholar 

  31. Fowler M, Virostko J, Chen Z et al (2005) Assessment of pancreatic islet mass after islet transplantation using in vivo bioluminescence imaging. Transplantation (USA) 79:768–776

    Article  Google Scholar 

  32. Lu Y, Dang H, Middleton B et al (2004) Bioluminescent monitoring of islet graft survival after transplantation. Mol Ther (USA) 9:428–435

    Article  CAS  Google Scholar 

  33. Chen X, Zhang X, Larson CS, Baker MS, Kaufman DB (2006) In vivo bioluminescence imaging of transplanted islets and early detection of graft rejection. Transplantation (USA) 81:1421–1427

    Article  Google Scholar 

  34. Park SY, Wang X, Chen Z et al (2005) Optical imaging of pancreatic beta cells in living mice expressing a mouse insulin I promoter-firefly luciferase transgene. Genesis (USA) 43:80–86

    Article  CAS  Google Scholar 

  35. Smith SJ, Zhang H, Clermont AO, et al (2006) In vivo monitoring of pancreatic beta-cells in a transgenic mouse model. Mol Imaging (USA) 5

  36. Hara M, Wang X, Kawamura T et al (2003) Transgenic mice with green fluorescent protein-labeled pancreatic beta-cells. Am J Physiol Endocrinol Metab (USA) 284:E177–E183

    CAS  Google Scholar 

  37. Zhang W, Feng JQ, Harris SE et al (2001) Rapid in vivo functional analysis of transgenes in mice using whole body imaging of luciferase expression. Transgenic Res (USA) 10:423–434

    Article  CAS  Google Scholar 

  38. Gannon M, Gamer LW, Wright CV (2001) Regulatory regions driving developmental and tissue-specific expression of the essential pancreatic gene pdx1. Dev Biol (USA) 238:185–201

    CAS  Google Scholar 

  39. Brissova M, Fowler M, Wiebe P et al (2004) Intraislet endothelial cells contribute to revascularization of transplanted pancreatic islets. Diabetes (USA) 53:1318–1325

    Article  CAS  Google Scholar 

  40. Wang T, Lacik I, Brissova M et al (1997) An encapsulation system for the immunoisolation of pancreatic islets. Nat Biotechnol (USA) 15:358–362

    Article  CAS  Google Scholar 

  41. Brissova M, Shiota M, Nicholson WE et al (2002) Reduction in pancreatic transcription factor PDX-1 impairs glucose-stimulated insulin secretion. J Biol Chem (USA) 277:11225–11232

    CAS  Google Scholar 

  42. Brissova M, Fowler MJ, Nicholson WE et al (2005) Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem (USA) 53:1087–1097

    Article  CAS  Google Scholar 

  43. Brissova M, Blaha M, Spear C et al (2005) Reduced PDX-1 expression impairs islet response to insulin resistance and worsens glucose homeostasis. Am J Physiol Endocrinol Metab (USA) 288:E707–E714

    Article  CAS  Google Scholar 

  44. Virostko J, Powers AC, Jansen ED (2007) Validation of luminescent source reconstruction using single-view spectrally resolved bioluminescence images. Appl Opt (USA) 46:2540–2547

    Google Scholar 

  45. Kuo C, Coquoz O, Troy TL, Xu H, Rice BW (2007) Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging. J Biomed Opt (USA) 12:024007

    Article  CAS  Google Scholar 

  46. Kriz J, Jirak D, Girman P et al (2005) Magnetic resonance imaging of pancreatic islets in tolerance and rejection. Transplantation (USA) 80:1596–1603

    Article  Google Scholar 

  47. Medarova Z, Evgenov NV, Dai G, Bonner-Weir S, Moore A (2006) In vivo multimodal imaging of transplanted pancreatic islets. Nat Protoc (USA) 1:429–435

    Article  CAS  Google Scholar 

  48. Kennedy HJ, Pouli AE, Ainscow EK et al (1999) Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. Potential role for strategically located mitochondria. J Biol Chem (USA) 274:13281–13291

    CAS  Google Scholar 

  49. Nielsen DA, Welsh M, Casadaban MJ, Steiner DF (1985) Control of insulin gene expression in pancreatic beta-cells and in an insulin-producing cell line, RIN-5F cells. I. Effects of glucose and cyclic AMP on the transcription of insulin mRNA. J Biol Chem (USA) 260:13585–13589

    CAS  Google Scholar 

Download references

Acknowledgements

The MIP promoter fragment was graciously provided by Mark Magnuson at Vanderbilt University and the mice were generated in the Vanderbilt Transgenic Mouse/ESC Shared Resource. This study was supported by a grant from the Juvenile Diabetes Research Foundation International, a Merit Review Award from the VA Research Service, the National Institutes of Health (DK68764, DK66636, DK69603, DK63439, DK62641, DK068751, T35DK07383, T32EB001628), the Vanderbilt Mouse Metabolic Phenotyping Center (DK59637), and the Vanderbilt Diabetes Research and Training Center (DK20593). Work performed in the Vanderbilt University Institute of Imaging Science was supported by SAIRP U24 CA126588.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvin C. Powers.

Additional information

Virostko and Radhika contributed equally to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Transgenic mice expressing luciferase under control of a fragment of the pdx1 promoter (pdx1-Luc) emit bioluminescence. a Light emission from pdx1-Luc animals was present throughout the animal, with maximal expression in areas of exposed skin (paws, tail, and nose). b Pdx1-Luc islets emitted bioluminescence 3 weeks after transplantation beneath the renal capsule. (PDF 56 kb)

Supplementary Figure 2

Glucose level affects in vitro bioluminescence emission from MIP-Luc-VU islets. Islets were cultured overnight in RPMI with 10% FBS and 2.5, 5.6, 11.0, or 16.7 mM glucose, left to right, and bioluminescence imaging was performed after the addition of luciferin. Islets cultured overnight in higher glucose levels display increased bioluminescence (n = 3). Luciferase activity, as measured by luminometer, also increases with higher glucose concentration (n = 3). (PDF 124 kb)

Supplementary Figure 3

MIP-Luc-VU mice fed a high-fat diet for 6 months (black squares) have reduced glucose clearing (1.5 g/kg body wt) during an intraperitoneal glucose tolerance test compared with animals fed a regular diet (open circles). (PDF 29 kb)

Supplementary Figure 4

BLI of 100 MIP-Luc-VU islets transplanted beneath the renal capsule of an FVB mouse is detected more than 16 months after transplantation. (PDF 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virostko, J., Radhika, A., Poffenberger, G. et al. Bioluminescence Imaging in Mouse Models Quantifies β Cell Mass in the Pancreas and After Islet Transplantation. Mol Imaging Biol 12, 42–53 (2010). https://doi.org/10.1007/s11307-009-0240-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-009-0240-1

Key words

Navigation