Skip to main content
Log in

Dynamic Monitoring of Apoptosis in Chemotherapies with Multiple Fluorescence Reporters

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study is to dynamically and non-invasively monitor the temporal relationship among caspase-3, BID, and cytochrome c in chemotherapy.

Procedures

ASTC-a-1 cells expressing the corresponding fluorescence reporters were treated with Taxol or cisplatin and imaged using FRET and fluorescence overlapping technique. Western blot was performed to validate the fluorescence analysis.

Results

In fluorescence imaging analysis, Taxol-induced apoptosis showed caspase-3 activation (13 h 50 min) was prior to BID cleavage (15 h 10 min) and subsequent significant cytochrome c release (17 ~ 18 h 20 min), whereas the cisplatin-induced apoptosis showed BID cleavage (5 h 40 min) and significant cytochrome c release (7 ~ 8 h 20 min) were prior to caspase-3 activation (14 h 20 min). Western blot further validated the results above.

Conclusions

The new approach successfully reveals the difference in temporal signaling apoptosis events between Taxol and cisplatin. It may help us come to a better understanding of the detailed mechanisms in chemotherapeutic-agents-induced apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  PubMed  CAS  Google Scholar 

  2. Nagata S (1997) Apoptosis by death factor. Cell 88:355–365

    Article  PubMed  CAS  Google Scholar 

  3. Luo X, Budihardjo L, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl-2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490

    Article  PubMed  CAS  Google Scholar 

  4. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase-8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    Article  PubMed  CAS  Google Scholar 

  5. Alimonti BJ, Shi L, Baijal PK, Greenberg AH (2001) Granzyme B induces BID-mediated cytochrome c release and mitochondrial permeability transition. J Biol Chem 276:6974–6982

    Article  PubMed  CAS  Google Scholar 

  6. Stoka V, Turk B, Schendel SL et al (2001) Lysosomal protease pathways to apoptosis, cleavage of Bid, not pro-caspases, is the most likely route. J Biol Chem 276:3149–3157

    Article  PubMed  CAS  Google Scholar 

  7. Li S, Zhao Y, He X et al (2002) Relief of extrinsic pathway inhibition by the Bid-dependent mitochondrial release of Smac in Fas-mediated hepatocyte apoptosis. J Biol Chem 277:26912–26920

    Article  PubMed  CAS  Google Scholar 

  8. Esposti MD, Ferry G, Masdehors P, Boutin JA, Hickman JA, Dive C (2003) Post-translational modification of Bid has differential effects on its susceptibility to cleavage by caspase 8 or caspase 3. J BiolChem 278:15749–15757

    Google Scholar 

  9. Slee EA, Keogh SA, Martin SJ (2000) Cleavage of BID during cytotoxic drug and UV radiation-induced apoptosis occurs downstream of the point of Bcl-2 action and is catalyzed by Caspase-3: a potential feedback loop for amplification of apoptosis associated mitochondrial cytochrome c release. Cell Death Diff 7:556–565

    Article  CAS  Google Scholar 

  10. Kiwamu T, Takeharu N, Atsushi M, Masayuki M (2003) Spatio temporal activation of caspase revealed by indicator that is insensitive to environmental effects. J Cell Biol 160:235–243

    Article  Google Scholar 

  11. Onuki R, Nagasaki A, Kawasaki H, Baba T, Uyeda TQP, Taira K (2002) Confirmation by FRET in individual living cells of the absence of significant amyloid β-mediated caspase 8 activation. Proc Natl Acad Sci USA 99:14716–14721

    Article  PubMed  CAS  Google Scholar 

  12. Kunkel MT, Ni Q, Tsien RY, Zhang J, Newton AC (2005) Spatio-temporal dynamics of protein kinase B/Akt signaling revealed by a genetically encoded fluorescent reporter. J Biol Chem 280:5581–5587

    Article  PubMed  CAS  Google Scholar 

  13. Violin JD, Zhang J, Tsien RY, Newton AC (2003) A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J Cell Biol 161:899–909

    Article  PubMed  CAS  Google Scholar 

  14. Gao X, Chen T, Xing D, Wang F, Pei Y, Wei X (2006) Single cell analysis of PKC activation during proliferation and apoptosis induced by laser irradiation. J Cell Physiol 206:441–448

    Article  PubMed  CAS  Google Scholar 

  15. Wu Y, Xing D, Luo S, Tang Y, Chen Q (2006) Detection of caspase-3 activation in single cells by fluorescence resonance energy transfer during photodynamic therapy induced apoptosis. Cancer Lett 235:239–247

    Article  PubMed  CAS  Google Scholar 

  16. Wang F, Chen T, Xing D, Wang J, Wu Y (2005) Measuring dynamics of caspase-3 activity in living cells using FRET technique during apoptosis induced by high fluence low-power laser irradiation. Lasers Surg Med 36:2–7

    Article  PubMed  Google Scholar 

  17. Fields S (1989) A novel geneic system to detect protein–protein interactions. Nature 340:245–246

    Article  PubMed  CAS  Google Scholar 

  18. Zanetta G, Fei F, Mangioni C (2000) Chemotherapy with paclitaxel, ifosfamide, cisplatin for the treatment of squamous cell cervical cancer: the experience of Monza. Semin Oncol 27:23–274

    PubMed  CAS  Google Scholar 

  19. Vorobiof DA, Rapoport BL, Chasen MR et al (2004) Phase II clinical trial of carboplatin and docetaxel in patients with metastatic ovarian cancer: active combination with low incidence of peripheral neuropathy. Breast 13:219–226

    Article  PubMed  CAS  Google Scholar 

  20. Kohn EC, Sarosy G, Bicher A (1994) Dose-intense taxol: high response rate in patients with platinum-resistant recurrent ovarian cancer. J Natl Cancer Inst 86:18–24

    Article  PubMed  CAS  Google Scholar 

  21. Eastman A (1999) The mechanism of action of cisplatin: from adducts to apoptosis. In: Lippert B (ed) Cisplatin, chemistry and biochemistry of a leading anticancer drug. Wiley-VCH, Basel, pp 111–134

    Google Scholar 

  22. Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279

    Article  PubMed  CAS  Google Scholar 

  23. Jordan P, Carmo-Fonseca M (1998) Cisplatin inhibits synthesis of ribosomal RNA in vivo. Nucleic Acids Res 26:2831–2836

    Article  PubMed  CAS  Google Scholar 

  24. Au JL, Kumar RR, Li D, Wientjes MG (1999) Kinetics of hallmark biochemical changes in paclitaxel-induced apoptosis. AAPS PharmSci 1:E8

    Article  PubMed  CAS  Google Scholar 

  25. Andre N, Braguer D, Brasseur G et al (2000) Paclitaxel induces release of cytochrome c from mitochondria isolated from human neuroblastoma cells. Cancer Res 60:5349–5353

    PubMed  CAS  Google Scholar 

  26. Park SJ, Wu CH, Gordon JD, Zhong X, Emami A, Safa AR (2004) Taxol induces caspase-10 dependent apoptosis. J Biol Chem 279:51057–51067

    Article  PubMed  CAS  Google Scholar 

  27. Ling Y, Zhong Y, Perez-Soler R (2001) Disruption of cell adhesion and caspase-mediated proteolysis of β- and γ-Catenins and APC protein in paclitaxel-induced apoptosis. Mol Pharmacol 59:593–603

    PubMed  CAS  Google Scholar 

  28. Koivusalo R, Krausz E, Ruotsalainen P, Helenius H, Hietanen S (2002) Chemoradiation of cervical cancer cells: targeting human papillomavirus E6 and p53 leads to either augmented or attenuated apoptosis depending on the platinum carrier ligand. Cancer Res 62:7364–7371

    PubMed  CAS  Google Scholar 

  29. Emert-Sedlak L, Shangary S, Rabinovitz A, Miranda MB, Delach SM, Johnson DE (2005) Involvement of cathepsin D in chemotherapy-induced cytochrome c release, caspase activation, and cell death. Mol Cancer Ther 4:733–742

    Article  PubMed  CAS  Google Scholar 

  30. Bava SV, Puliappadamba VT, Deepti A, Nair A, Karunagaran D, Anto RJ (2005) Sensitization of Taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor- B and the serine/threonine kinase Akt and is independent of tubulin polymerization. J Biol Chem 280:6301–6308

    Article  PubMed  CAS  Google Scholar 

  31. Lacour S, Hammann A, Wotawa A, Corcos L, Solary E, Dimanche-Boitrel MT (2001) Anticancer agents sensitize tumor cells to tumor necrosis factor-related apoptosis-inducing ligand-mediated caspase-8 activation and apoptosis. Cancer Res 61:1645–1651

    PubMed  CAS  Google Scholar 

  32. Park MS, Leon MD, Devarajan P (2002) Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathway. J Am Soc Nephrol 13:858–865

    Article  PubMed  CAS  Google Scholar 

  33. Lynn S, Shiung JN, Gurr JR, Jan KY (1998) Arsenite stimulates poly (ADP-ribosylation) by generation of nitric oxide. Free Radic Biol Med 24:442–449

    Article  PubMed  CAS  Google Scholar 

  34. Haefen VC, Wieder T, Essmann F, Schulze-Osthoff F, Dorken B, Daniel PT (2002) Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3/-8-driven mitochondrial amplification loop. Oncogene 22:2236–2247

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported in part by the National Natural Science Foundation of China (30470494; 30627003) and the Natural Science Foundation of Guangdong Province (7117865).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da Xing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Xing, D. & Chen, Q. Dynamic Monitoring of Apoptosis in Chemotherapies with Multiple Fluorescence Reporters. Mol Imaging Biol 11, 213–222 (2009). https://doi.org/10.1007/s11307-008-0195-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-008-0195-7

Key words

Navigation