Skip to main content
Log in

Detection of Homo- or Hetero-Association of Doks by Fluorescence Resonance Energy Transfer in Living Cells

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The Dok proteins represent a family of adaptor proteins serving as common substrates for protein tyrosine kinases and play an important role in regulating signal transduction in multiple cell functions. Dimerization of Dok proteins may represent a powerful and flexible regulatory mechanism that can achieve a variety of consequences. This study aims to detect the homo- or hetero-association of Doks in living cells.

Procedure

The transfection of CFP or YFP fusion protein constructs was carried out using lipofectamine 2000. FRET Measurements were performed using three-channel microscopy and Spectroscopy.

Results

By using fluorescence resonance energy transfer technology, we demonstrated, for the first time to our knowledge, that Dok5 and Dok1 could form homomeric and heteromeric associations in living cells. Moreover, pleckstrin homology (PH) domain was found to be essential for homomeric associations of Dok5, while PH domain and phosphotyrosine binding domain were found to be crucial for homomeric associations of Dok1 or heteromeric associations between Dok1 and Dok5.

Conclusion

The mechanisms underlying Doks’ association may benefit the further understanding of the important role of Dok proteins in regulating signal transduction activated by tyrosine kinases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carpino N, Wisniewski D, Strife A, Marshak D, Stillman B, Clarkson B (1997) p62dok: a constitutively tyrosine-phosphorylated, GAP-associated protein in chronic myelogenous leukemia progenitor cells. Cell 88:197–204

    Article  PubMed  CAS  Google Scholar 

  2. Yasuda T, Bundo K, Hino A, Honda K, Inoue A, Shirakata M, Osawa M, Tamura T, Nariuchi H, Oda H, Yamamoto T, Yamanashi Y (2007) Dok-1 and Dok-2 are negative regulators of T cell receptor signaling. Int Immunol 19:487–495

    Article  PubMed  CAS  Google Scholar 

  3. Grimm J, Sachs M, Britsch S, Cesare SD, Schwarz-Romomd T, Alitalo K, Birchmeier W (2001) Novel p62dok family members, Dok-4 and Dok-5, are substrates of the c-Ret receptor tyrosine kinase and mediate neuronal differentiation. J Cell Biol 154:345–354

    Article  PubMed  CAS  Google Scholar 

  4. Cristofano AD, Carpino N, Dunant N, Friedland G, Kobayashi R, Strife A, Wisniewski D, Clarkson B, Pandolfi PP, Resh MD (1998) Molecular cloning and characterization of p56dok-2 defines a new family of RasGAP-binding proteins. J Biol Chem 273:4827–4830

    Article  PubMed  Google Scholar 

  5. Jones N, Dumont DJ (1998) The Tek/Tie2 receptor signals through a novel Dok-related docking protein, Dok-R. Oncogene 17:1097–1108

    Article  PubMed  CAS  Google Scholar 

  6. Cong F, Yuan B, Goff SP (1999) Characterization of a novel member of the DOK family that binds and modulates Ab1 signaling. Mol Cell Biol 19:8314–8325

    PubMed  CAS  Google Scholar 

  7. Lemay S, Davidson D, Latour S, Veillette A (2000) Dok-3, a novel adapter molecule involved in the negative regulation of immunoreceptor signaling. Mol Cell Biol 20:2743–2754

    Article  PubMed  CAS  Google Scholar 

  8. Crowder RJ, Enomoto H, Yang M, Johnson EM, Milbrandt J (2004) Dok-6, a novel p62 Dok family member, promotes Ret-mediated neurite outgrowth. J Biol Chem 279:42072–42081

    Article  PubMed  CAS  Google Scholar 

  9. Okada k, Inoue A, Okada M, Murata Y, Kakuta S, Jigami T, Kubo S, Shiraishi H, Eguchi K, Motomura M, Akiyama T, Iwakura Y, Higuchi O, Yamanashi Y (2006) The muscle protein Dok-7 is essential for neuromuscular synaptogenesis. Science 312:1082–1085

    Google Scholar 

  10. Zhou SY, Yamanashi YJ, Liu D, Baltimore D (2001) Domain-dependent function of the rasGAP-binding protein p62Dok in cell signaling. J Biol Chem 276:2459–2465

    Article  Google Scholar 

  11. Boulay I, Némorin JG, Duplay P (2005) Phosphotyrosine binding-mediated oligomerization of downstream of tyrosine kinase (Dok)-1 and Dok-2 is involved in CD2-induced Dok phosphorylation. J Immunol 175:4483–4489

    PubMed  CAS  Google Scholar 

  12. Shi L, Yue J, You Y, Yin B, Gong Y, Xu C, Qiang B, Yuan J, Liu Y, Peng X (2006) Dok5 is substrate of TrkB and TrkC receptors and involved in neurotrophin induced MAPK activation. Cell Signal 18:1995–2003

    Article  PubMed  CAS  Google Scholar 

  13. Parsons M, Vojnovic B, Ameer-Beg S (2004) Imaging protein–protein interactions in cell motility using fluorescence resonance energy transfer (FRET). Biochem Soc Trans 32(pt3):431–433

    Article  PubMed  CAS  Google Scholar 

  14. Gordon GW, Berry G, Liang XH, Levine B, Herman B (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74:2702–2713

    Article  PubMed  CAS  Google Scholar 

  15. Moldovan MC, Sabbagh L, Breton G, Sekaly RP, Krummel MF (2006) Triggering of T cell activation via CD4 dimers. J Immunol 176:5438–5445

    PubMed  CAS  Google Scholar 

  16. Fu G, Zhang F, Cao L, Xu Z, Chen Y, Wang G, He C (2008) Constitutive plasma membrane targeting and microdomain localization of Dok5 studied by single-molecule microscopy. Biophys Chem 136:13–18

    Article  PubMed  CAS  Google Scholar 

  17. Zhang Y, Yan ZY, Farooq A, Liu XJ, Lu CL, Zhou MM, He C (2004) Molecular basis of distinct interactions between Dok1 PTB domain and tyrosine-phosphorylated EGFR receptor. J Mol Biol 343:1147–1155

    Article  PubMed  CAS  Google Scholar 

  18. Sorkin A, McClure M, Huang F, Carter R (2000) Interaction of EGF receptor and Grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Curr Biol 10:1395–1398

    Article  PubMed  CAS  Google Scholar 

  19. Nagy P, Vámosi G, Bodnár A, Lockett SJ, ZöLLősi J (1998) Intensity-based energy transfer measurements in digital imaging microscopy. Eur Biophys J 27:377–389

    Article  PubMed  CAS  Google Scholar 

  20. Erickson MG, Alseikhan BA, Peterson BZ, Yue DT (2001) Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells. Neuron 31:973–985

    Article  PubMed  CAS  Google Scholar 

  21. Fu G, Yang HY, Wang C, Zhang F, You ZD, Wang GY, He C, Chen YZ, Xu ZZ (2006) Detection of constitutive heterodimerization of the integrin Mac-1 subunits by fluorescence resonance energy transfer in living cells. Biochem Biophys Res Commun 346:986–991

    Article  PubMed  CAS  Google Scholar 

  22. Overton MC, Blumer KJ (2002) Use of fluorescence resonance energy transfer to analyze oligomerization of G-protein-coupled receptors expressed in yeast. Methods 27:324–332

    Article  PubMed  CAS  Google Scholar 

  23. Klemm JD, Schreiber SL, Crabtree GR (1998) Dimerization as a regulatory mechanism in signal transduction. Annu Rev Immunol 16:569–592

    Article  PubMed  CAS  Google Scholar 

  24. Law SF, Zhang YZ, Fashena SJ, Toby G, Estojak J, Golemis EA (1999) Dimerization of the docking/adaptor protein HEF1 via a carboxy-terminal helix-loop-helix domain. Exp Cell Res 252:224–235

    Article  PubMed  CAS  Google Scholar 

  25. Dhe-Paganon S, Werner ED, Nishi M, Hansen L, Chi Y-I, Shoelson SE (2004) A phenylalanine zipper mediates APS dimerization. Nat Struct Mol Biol 11:968–974

    Article  PubMed  CAS  Google Scholar 

  26. Haraguchi T (2002) Live cell imaging: Approaches for studying protein dynamics in living cells. Cell Struct Funct 27:333–334

    Article  PubMed  CAS  Google Scholar 

  27. Sekar RB, Periasamy A (2003) Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol 160:629–633

    Article  PubMed  CAS  Google Scholar 

  28. Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    Article  PubMed  CAS  Google Scholar 

  29. Smith A, Wang J, Cheng CM, Zhou J, Weickert CS, Boudy CA (2004) High-level expression of Dok-1 in neurons of the primate prefrontal cortex and hippocampus. J Neurosci Res 75:218–224

    Article  PubMed  CAS  Google Scholar 

  30. Favre C, Gérard A, Clauzier E, Pontarotti P, Olive D, Nunès JA (2003) Dok4 and Dok5: new Dok-related genes expressed in human T cells. Genes Immun 4:40–45

    Article  PubMed  CAS  Google Scholar 

  31. Forman-Kay JD, Pawson T (1999) Diversity in protein recognition by PTB domains. Curr Opin Struct Biol 9:690–695

    Article  PubMed  CAS  Google Scholar 

  32. Lemmon MA (2005) Pleckstrin homology domains: two halves make a hole? Cell 120:574–576

    Article  PubMed  CAS  Google Scholar 

  33. Bedirian A, Baldwin C, Abe JI, Takano T, Lemay S (2004) Pleckstrin homology and phosphotyrosine-binding domain-dependent membrane association and tyrosine phosphorylation of Dok-4, an inhibitory adapter molecule expressed in epithelial cells. J Biol Chem 279:19335–19349

    Article  PubMed  CAS  Google Scholar 

  34. Yan KS, Kuti M, Zhou MM (2002) PTB or not PTB—that is the question. FEBS Lett 513:67–70

    Article  PubMed  CAS  Google Scholar 

  35. Shi N, Ye S, Bartlam M, Yang M, Wu J, Liu Y, Sun F, Han X, Peng X, Qiang B, Yuan J, Rao Z (2004) Structural basis for the specific recognition of RET by the Dok1 phosphotyrosine binding domain. J Biol Chem 279:4962–4969

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Luo Jian-hong for generously providing CFP-YFP vector and technical assistance on FRET determination. This work was supported by National Key Basic Research Program (2002CB713808, 2006CB500702, and 2007CB947100), National Natural Science Foundation (30291705, 30770657, and 30530240), Program for Changjiang Scholars and Innovative Research Team in University (IRT0528), National 863 program (2006 AA02A114) and Shanghai Metropolitan Fund for Research and Development (07DJ14005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Fu, G., Wang, C. et al. Detection of Homo- or Hetero-Association of Doks by Fluorescence Resonance Energy Transfer in Living Cells. Mol Imaging Biol 11, 188–194 (2009). https://doi.org/10.1007/s11307-008-0189-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-008-0189-5

Key words

Navigation