Skip to main content
Log in

In Vivo Dendritic Cell Tracking Using Fluorescence Lifetime Imaging and Near-Infrared-Emissive Polymersomes

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Noninvasive in vivo cell-tracking techniques are necessary to advance the field of cellular-based therapeutics as well as to elucidate mechanisms governing in vivo cell biology. Fluorescence is commonly used for in vitro and postmortem biomedical studies but has been limited by autofluorescence at the whole-animal level.

Procedures

In this report, we demonstrate the ability of in vivo fluorescent lifetime imaging to remove autofluorescence and thereby enable in vivo dendritic cell tracking in naïve mice. Specifically, we track mature dendritic cells (DCs) labeled internally with near-infrared-emissive polymersomes (NIR-DCs).

Results

We establish the ability to detect labeled cells in vivo and image NIR-DC trafficking after both intravenous and subcutaneous delivery. In addition, we demonstrate the longitudinal capacity of this method by characterizing NIR-DC migration kinetics in the popliteal lymph node.

Conclusions

This work provides a tool to evaluate dendritic-cell-based immunotherapy and generates novel opportunities for in vivo fluorescence imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gage FH (1998) Cell therapy. Nature 392(6679):18–24

    PubMed  CAS  Google Scholar 

  2. Gilboa E (2007) DC-based cancer vaccines. J Clin Invest 117(5):1195–1203

    Article  PubMed  CAS  Google Scholar 

  3. Welsh DK, Kay SA (2005) Bioluminescence imaging in living organisms. Curr Opin Biotechnol 16(1):73–78

    Article  PubMed  CAS  Google Scholar 

  4. Wang XL, Rosol M, Ge SD et al (2003) Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. Blood 102(10):3478–3482

    Article  PubMed  CAS  Google Scholar 

  5. Hardy J, Edinger M, Bachmann MH et al (2001) Bioluminescence imaging of lymphocyte trafficking in vivo. Exp Hematol 29(12):1353–1360

    Article  PubMed  CAS  Google Scholar 

  6. Zhao H, Doyle TC, Coquoz O et al (2005) Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. J Biomed Opt 10(4):041210

    Article  Google Scholar 

  7. Troy T, Jekic-McMullen D, Sambucetti L, Rice B (2004) Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging 3(1):9–23

    Article  PubMed  CAS  Google Scholar 

  8. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17(5):545–580

    Article  PubMed  CAS  Google Scholar 

  9. Baba S, Cho SY, Ye Z et al (2007) How reproducible is bioluminescent imaging of tumor cell growth? Single time point versus the dynamic measurement approach. Mol Imaging 6(5):315–322

    PubMed  Google Scholar 

  10. McCormack E, Micklem DR, Pindard LE et al (2007) In vivo optical imaging of acute myeloid leukemia by green fluorescent protein: time-domain autofluorescence decoupling, fluorophore quantification, and localization. Mol Imaging 6(3):193–204

    PubMed  CAS  Google Scholar 

  11. Christian NA, Milone MC, Ranka SS et al (2007) Tat-functionalized near-infrared emissive polymersomes for dendritic cell labeling. Bioconjug Chem 18(1):31–40

    Article  PubMed  CAS  Google Scholar 

  12. Ladd DL, Snow RA (1993) Reagents for the preparation of chromophorically labeled polyethylene glycol-protein conjugates. Anal Biochem 210(2):258–261

    Article  PubMed  CAS  Google Scholar 

  13. Ghoroghchian PP, Lin JJ, Brannan AK et al (2006) Quantitative membrane loading of polymer vesicles. Soft Matter 2(11):973–980

    Article  CAS  Google Scholar 

  14. Ghoroghchian PP, Frail PR, Susumu K et al (2005) Near-infrared-emissive polymersomes: self-assembled soft matter for in vivo optical imaging. Proc Natl Acad Sci U S A 102(8):2922–2927

    Article  PubMed  CAS  Google Scholar 

  15. Courreges MC, Benencia F, Conejo-Garcia JR, Zhang L, Coukos G (2006) Preparation of apoptotic tumor cells with replication-incompetent HSV augments the efficacy of dendritic cell vaccines. Cancer Gene Ther 13(2):182–193

    Article  PubMed  CAS  Google Scholar 

  16. Zhang L, Yang N, Garcia JRC et al (2002) Generation of a syngeneic mouse model to study the effects of vascular endothelial growth factor in ovarian carcinoma. Am J Pathol 161(6):2295–2309

    PubMed  CAS  Google Scholar 

  17. Weagle G, Paterson PE, Kennedy J, Pottier R (1988) The nature of the chromophore responsible for naturally-occurring fluorescence in mouse skin. J Photochem Photobiol B Biol 2(3):313–320

    Article  CAS  Google Scholar 

  18. Lappin MB, Weiss JM, Delattre V et al (1999) Analysis of mouse dendritic cell migration in vivo upon subcutaneous and intravenous injection. Immunology 98(2):181–188

    Article  PubMed  CAS  Google Scholar 

  19. de Vries IJM, Lesterhuis WJ, Barentsz JO et al (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23(11):1407–1413

    Article  PubMed  Google Scholar 

  20. Ahrens ET, Flores R, Xu HY, Morel PA (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nature Biotechnology 23(8):983–987

    Article  PubMed  CAS  Google Scholar 

  21. Allan RS, Waithman J, Bedoui S et al (2006) Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 25(1):153–162

    Article  PubMed  CAS  Google Scholar 

  22. Yamada Y (2000) Fundamental studies of photon migration in biological tissues and their application to optical tomography. Opt Rev 7(5):366–374

    Article  Google Scholar 

  23. McQuade P, Rowland DJ, Lewis JS, Welch MJ (2005) Positron-emitting isotopes produced on biomedical cyclotrons. Curr Med Chem 12(7):807–818

    Article  PubMed  CAS  Google Scholar 

  24. Lucignani G, Ottobrini L, Martelli C, Rescigno M, Clerici M (2006) Molecular imaging of cell-mediated cancer immunotherapy. Trends Biotech 24(9):410–418

    Article  CAS  Google Scholar 

  25. Shinde R, Perkins J, Contag CH (2006) Luciferin derivatives for enhanced in vitro and in vivo bioluminescence assays. Biochemistry 45(37):11103–11112

    Article  PubMed  CAS  Google Scholar 

  26. Abulrob A, Brunette E, Slinn J, Baumann E, Stanimirovic D (2007) In vivo time domain optical imaging of renal ischemia–reperfusion injury: discrimination based on fluorescence lifetime. Mol Imaging 6(5):304–314

    PubMed  CAS  Google Scholar 

  27. Hassan M, Riley J, Chernomordik V et al (2007) Fluorescence lifetime imaging system for in vivo studies. Mol Imaging 6(4):229–236

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants NIH EB003457 (D.A.H.), NIH/NCI R01-CA116779 (G.C.), NIH/NCI P50-CA083638 (G.C.), and NIH RO1CA115229 (M.J.T.). We also acknowledge the Optical Imaging Core at the University of Pennsylvania for access to the eXplore Optix instrument (NIH Grant CA 105008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Hammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christian, N.A., Benencia, F., Milone, M.C. et al. In Vivo Dendritic Cell Tracking Using Fluorescence Lifetime Imaging and Near-Infrared-Emissive Polymersomes. Mol Imaging Biol 11, 167–177 (2009). https://doi.org/10.1007/s11307-008-0184-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-008-0184-x

Key words

Navigation