Skip to main content

Advertisement

Log in

Noninvasive Evaluation of Immunosuppressive Drug Efficacy on Acute Donor Cell Survival

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The therapeutic benefits of cell transplantation may depend on the survival of sufficient numbers of grafted cells. We evaluate four potent immunosuppressive medications aimed at preventing acute donor cell death.

Procedures and Results

Embryonic rat H9c2 myoblasts were stably transduced to express firefly luciferase reporter gene (H9c2-Fluc). H9c2-Fluc cells (3 × 106) were injected into thigh muscles of Sprague–Dawley rats (N = 30) treated with cyclosporine, dexamethasone, mycophenolate mofetil, tacrolimus, or saline from day −3 to day +14. Longitudinal optical bioluminescence imaging was performed over two weeks. Fluc activity was 40.0 ± 12.1% (dexamethasone), 30.5 ± 12.5% (tacrolimus), and 21.5 ± 3.5% (mycophenolate) vs. 12.0 ± 5.0% (control) and 8.3 ± 5.0% (cyclosporine) at day 4 (P < 0.05). However, by day 14, cell signals had decreased drastically to <10% for all groups despite drug therapy.

Conclusion

This study demonstrates the ability of optical molecular imaging for tracking cell survival noninvasively and raises important questions with regard to the overall efficacy of immunosuppressives for prolonging transplanted cell survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Goldman S (2005) Stem and progenitor cell-based therapy of the human central nervous system. Nat Biotechnol 23:862–871

    Article  PubMed  CAS  Google Scholar 

  2. Chien KR, Karsenty G (2005) Longevity and lineages: Toward the integrative biology of degenerative diseases in heart, muscle, and bone. Cell 120:533–544

    Article  PubMed  CAS  Google Scholar 

  3. Bonner-Weir S, Weir GC (2005) New sources of pancreatic beta-cells. Nat Biotechnol 23:857–861

    Article  PubMed  CAS  Google Scholar 

  4. Hofmann M, Wollert KC, Meyer GP, et al. (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111:2198–2202

    Article  PubMed  Google Scholar 

  5. Bulte JW, Douglas T, Witwer B, et al. (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19:1141–1147

    Article  PubMed  CAS  Google Scholar 

  6. Kraitchman DL, Heldman AW, Atalar E, et al. (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107:2290–2293

    Article  PubMed  Google Scholar 

  7. Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499

    Article  PubMed  CAS  Google Scholar 

  8. Wu JC, Chen IY, Sundaresan G, Min JJ, De A, Qiao JH, Fishbein MC, Gambhir SS (2003) Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 108:1302–1305

    Article  PubMed  Google Scholar 

  9. Weissleder R, Moore A, Mahmood U, et al. (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6:351–355

    Article  PubMed  CAS  Google Scholar 

  10. Wu JC, Tseng JR, Gambhir SS (2004) Molecular imaging of cardiovascular gene products. J Nucl Cardiol 11:491–505

    Article  PubMed  Google Scholar 

  11. Skuk D, Tremblay JP (2003) Cell therapies for inherited myopathies. Curr Opin Rheumatol 15:723–729

    Article  PubMed  Google Scholar 

  12. Murry CE, Wiseman RW, Schwartz SM, Hauschka SD (1996) Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 98:2512–2523

    Article  PubMed  CAS  Google Scholar 

  13. Muller-Ehmsen J, Peterson KL, Kedes L, et al. (2002) Rebuilding a damaged heart: Long-term survival of transplanted neonatal rat cardiomyocytes after myocardial infarction and effect on cardiac function. Circulation 105:1720–1726

    Article  PubMed  Google Scholar 

  14. Skuk D, Caron N, Goulet M, Roy B, Espinosa F, Tremblay JP (2002) Dynamics of the early immune cellular reactions after myogenic cell transplantation. Cell Transplant 11:671–681

    PubMed  Google Scholar 

  15. Kimes BW, Brandt BL (1976) Properties of a clonal muscle cell line from rat heart. Exp Cell Res 98:367–381

    Article  PubMed  CAS  Google Scholar 

  16. Tarnowski BI, Spinale FG, Nicholson JH (1991) DAPI as a useful stain for nuclear quantitation. Biotech Histochem 66:297–302

    Article  PubMed  CAS  Google Scholar 

  17. Leor J, Patterson M, Quinones MJ, Kedes LH, Kloner RA (1996) Transplantation of fetal myocardial tissue into the infarcted myocardium of rat. A potential method for repair of infarcted myocardium? Circulation 94:II332–II336

    PubMed  CAS  Google Scholar 

  18. Wang C, Sun J, Sheil AG, McCaughan GW, Bishop GA (2001) A short course of methylprednisolone immunosuppression inhibits both rejection and spontaneous acceptance of rat liver allografts. Transplantation 72:44–51

    Article  PubMed  CAS  Google Scholar 

  19. Skuk D, Goulet M, Roy B, Tremblay JP (2002) Efficacy of myoblast transplantation in nonhuman primates following simple intramuscular cell injections: Toward defining strategies applicable to humans. Exp Neurol 175:112–126

    Article  PubMed  CAS  Google Scholar 

  20. Camirand G, Caron NJ, Asselin I, Tremblay JP (2001) Combined immunosuppression of mycophenolate mofetil and FK506 for myoblast transplantation in mdx mice. Transplantation 72:38–44

    Article  PubMed  CAS  Google Scholar 

  21. Smythe GM, Hodgetts SI, Grounds MD (2000) Immunobiology and the future of myoblast transfer therapy. Mol Ther 1:304–313

    Article  PubMed  CAS  Google Scholar 

  22. Gussoni E, Soneoka Y, Strickland CD, et al. (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394

    PubMed  CAS  Google Scholar 

  23. Mendell JR, Kissel JT, Amato AA, et al. (1995) Myoblast transfer in the treatment of Duchenne's muscular dystrophy. N Engl J Med 333:832–838

    Article  PubMed  CAS  Google Scholar 

  24. Hodgetts SI, Beilharz MW, Scalzo AA, Grounds MD (2000) Why do cultured transplanted myoblasts die in vivo? DNA quantification shows enhanced survival of donor male myoblasts in host mice depleted of CD4+ and CD8+ cells or Nk1.1+ cells. Cell Transplant 9:489–502

    PubMed  CAS  Google Scholar 

  25. Rando TA, Pavlath GK, Blau HM (1995) The fate of myoblasts following transplantation into mature muscle. Exp Cell Res 220:383–389

    Article  PubMed  CAS  Google Scholar 

  26. Hardinger KL, Koch MJ, Brennan DC (2004) Current and future immunosuppressive strategies in renal transplantation. Pharmacotherapy 24:1159–1176

    Article  PubMed  CAS  Google Scholar 

  27. Huard J, Roy R, Guerette B, Verreault S, Tremblay G, Tremblay JP (1994) Human myoblast transplantation in immunodeficient and immunosuppressed mice: Evidence of rejection. Muscle Nerve 17:224–234

    Article  PubMed  CAS  Google Scholar 

  28. Sammels LM, Bosio E, Fragall CT, Grounds MD, van Rooijen N, Beilharz MW (2004) Innate inflammatory cells are not responsible for early death of donor myoblasts after myoblast transfer therapy. Transplantation 77:1790–1797

    Article  PubMed  Google Scholar 

  29. Muller-Ehmsen J, Whittaker P, Kloner RA, et al. (2002) Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J Mol Cell Cardiol 34:107–116

    Article  PubMed  CAS  Google Scholar 

  30. Reinecke H, Murry CE (2002) Taking the death toll after cardiomyocyte grafting: A reminder of the importance of quantitative biology. J Mol Cell Cardiol 34:251–253

    Article  PubMed  CAS  Google Scholar 

  31. Reinecke H, Zhang M, Bartosek T, Murry CE (1999) Survival, integration, and differentiation of cardiomyocyte grafts: A study in normal and injured rat hearts. Circulation 100:193–202

    PubMed  CAS  Google Scholar 

  32. Cao YA, Bachmann MH, Beilhack A, et al. (2005) Molecular imaging using labeled donor tissues reveals patterns of engraftment, rejection, and survival in transplantation. Transplantation 80:134–139

    Article  PubMed  Google Scholar 

  33. Wu JC, Sundaresan G, Iyer M, Gambhir SS (2001) Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice. Mol Ther 4:297–306

    Article  PubMed  CAS  Google Scholar 

  34. Swift SM, Clayton HA, London NJ, James RF (1998) The potential contribution of rejection to survival of transplanted human islets. Cell Transplant 7:599–606

    Article  PubMed  CAS  Google Scholar 

  35. Ostrowska A, Karrer FM, Bilir BM (1999) Histological identification of purified and cryopreserved allogeneic hepatocytes following transplantation in a murine model without host immunosuppression. Transpl Int 12:188–194

    Article  PubMed  CAS  Google Scholar 

  36. Barker RA, Dunnett SB, Faissner A, Fawcett JW (1996) The time course of loss of dopaminergic neurons and the gliotic reaction surrounding grafts of embryonic mesencephalon to the striatum. Exp Neurol 141:79–93

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the ASNC, GSK, AHA, and NHLBI (J.C.W.); NCI ICMIC-P50, NHLBI R01 HL078632, NCI SAIRP (S.S.G.); and Fund for Scientific Research Belgium—Flanders (O.G.). O. Gheysens and S. Lin contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph C. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gheysens, O., Lin, S., Cao, F. et al. Noninvasive Evaluation of Immunosuppressive Drug Efficacy on Acute Donor Cell Survival. Mol Imaging Biol 8, 163–170 (2006). https://doi.org/10.1007/s11307-006-0038-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-006-0038-3

Key words

Navigation