Abstract
Introduction
Ginseng berry (GB) has previously been demonstrated to improve systemic insulin resistance and regulate hepatic glucose metabolism and steatosis in mice with diet-induced obesity (DIO).
Objectives
In this study, the role of GB in metabolism was assessed using metabolomics analysis on the total liver metabolites of DIO mice.
Methods
Metabolomic profiling was performed using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF/MS) of liver tissue from mice on a 12-wk normal chow diet (NC), high-fat diet (HFD), and HFD supplemented with 0.1% GB (HFD + GB). The detected metabolites, its pathways, and functions were analyzed through partial least square discriminant analysis (PLS-DA), the small molecular pathway database (SMPDB), and MetaboAnalyst 5.0.
Results
The liver metabolite profiles of NC, HFD, and GB-fed mice (HFD + GB) were highly compartmentalized. Metabolites involved in major liver functions, such as mitochondrial function, gluconeogenesis/glycolysis, fatty acid metabolism, and primary bile acid biosynthesis, showed differences after GB intake. The metabolites that showed significant correlations with fasting blood glucose (FBG), insulin, and homeostatic model assessment for insulin resistance (HOMA-IR) were highly associated with mitochondrial membrane function, energy homeostasis, and glucose metabolism. Ginseng berry intake increased the levels of metabolites involved in mitochondrial membrane function, decreased the levels of metabolites related to glucose metabolism, and was highly correlated with metabolic phenotypes.
Conclusion
This study demonstrated that long-term intake of GB changed the metabolite of hepatosteatotic livers in DIO mice, normalizing global liver metabolites involved in mitochondrial function and glucose metabolism and indicating the potential mechanism of GB in ameliorating hyperglycemia in DIO mice.
Similar content being viewed by others
References
Akella, N. M., Ciraku, L., & Reginato, M. J. (2019). Fueling the fire: Emerging role of the hexosamine biosynthetic pathway in cancer. BMC Biology, 17(1), 1–14. https://doi.org/10.1186/s12915-019-0671-3.
Bechmann, L. P., Hannivoort, R. A., Gerken, G., Hotamisligil, G. S., Trauner, M., & Canbay, A. (2012). The interaction of hepatic lipid and glucose metabolism in liver diseases. Journal of Hepatology, 56(4), 952–964. https://doi.org/10.1016/j.jhep.2011.08.025
Bi, X., Xia, X., Mou, T., Jiang, B., Fan, D., Wang, P., Liu, Y., Hou, Y., & Zhao, Y. (2014). Anti-tumor activity of three ginsenoside derivatives in lung cancer is associated with Wnt/β-catenin signaling inhibition. European Journal of Pharmacology, 742, 145–152. https://doi.org/10.1016/j.ejphar.2014.08.032.
Choi, H. S., Kim, S., Kim, M. J., Kim, M. S., Kim, J., Park, C. W., Seo, D., Shin, S. S., & Oh, S. W. (2018). Efficacy and safety of Panax ginseng berry extract on glycemic control: A 12-wk randomized, double-blind, and placebo-controlled clinical trial. Journal of Ginseng Research, 42(1), 90–97. https://doi.org/10.1016/j.jgr.2017.01.003.
Chung, I. M., Lim, J. J., Ahn, M. S., Jeong, H. N., An, T. J., & Kim, S. H. (2016). Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years. Journal of Ginseng Research, 40(1), 68–75. https://doi.org/10.1016/j.jgr.2015.05.006.
Corbin, K. D., & Zeisel, S. H. (2012). Choline metabolism provides novel insights into non-alcoholic fatty liver disease and its progression. Current Opinion in Gastroenterology, 28(2), 159. https://doi.org/10.1097/MOG.0b013e32834e7b4b.
Dey, L., Xie, J., Wang, A., Wu, J., Maleckar, S., & Yuan, C. S. (2003). Anti-hyperglycemic effects of ginseng: Comparison between root and berry. Phytomedicine, 10(6–7), 600–605. https://doi.org/10.1078/094471103322331908.
Gaggini, M., Carli, F., Rosso, C., Buzzigoli, E., Marietti, M., Della Latta, V., Ciociaro, D., Abate, M. L., Gambino, R., & Cassader, M. (2018). Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance. Hepatology, 67(1), 145–158. https://doi.org/10.1002/hep.29465.
Ge, T., Yang, J., Zhou, S., Wang, Y., Li, Y., & Tong, X. (2020). The role of the pentose phosphate pathway in diabetes and cancer. Frontiers in Endocrinology, 11, 365. https://doi.org/10.3389/fendo.2020.00365.
Guarino, M., & Dufour, J. F. (2019). Nicotinamide and NAFLD: Is there Nothing New under the Sun? Metabolites, 9(9), 180. https://doi.org/10.3390/metabo9090180.
Han, J., Dzierlenga, A. L., Lu, Z., Billheimer, D. D., Torabzadeh, E., Lake, A. D., Li, H., Novak, P., Shipkova, P., & Aranibar, N. (2017). Metabolomic profiling distinction of human nonalcoholic fatty liver disease progression from a common rat model. Obesity (Silver Spring, Md.), 25(6), 1069–1076. https://doi.org/10.1002/oby.21855.
Han, M. J., Park, S. J., Lee, S. J., & Choung, S. Y. (2022). The Panax ginseng berry extract and Soluble Whey protein hydrolysate mixture ameliorates Sarcopenia-related muscular deterioration in aged mice. Nutrients, 14(4), 799. https://doi.org/10.3390/nu14040799.
Hasegawa, T., Iino, C., Endo, T., Mikami, K., Kimura, M., Sawada, N., Nakaji, S., & Fukuda, S. (2020). Changed amino acids in NAFLD and liver fibrosis: A large cross-sectional study without influence of insulin resistance. Nutrients, 12(5), 1450. https://doi.org/10.3390/nu12051450.
Honda, T., Ishigami, M., Luo, F., Lingyun, M., Ishizu, Y., Kuzuya, T., Hayashi, K., Nakano, I., Ishikawa, T., & Feng, G. G. (2017). Branched-chain amino acids alleviate hepatic steatosis and liver injury in choline-deficient high-fat diet induced NASH mice. Metabolism, 69, 177–187. https://doi.org/10.1016/j.metabol.2016.12.013.
Joo, K. M., Lee, J. H., Jeon, H. Y., Park, C. W., Hong, D. K., Jeong, H. J., Lee, S. J., Lee, S. Y., & Lim, K. M. (2010). Pharmacokinetic study of ginsenoside re with pure ginsenoside re and ginseng berry extracts in mouse using ultra performance liquid chromatography/mass spectrometric method. Journal of Pharmaceutical and Biomedical Analysis, 51(1), 278–283. https://doi.org/10.1016/j.jpba.2009.08.013.
Kim, J., Cho, S., Kim, S., Kim, S., Park, C., Park, H., Seo, D., & Shin, S. (2016). Ginseng berry, a promising anti–aging strategy: Recent opinions on the biological effects of a traditional Korean ingredient. SOJ Biotech, 1, 8. https://doi.org/10.15226/2475-4714/1/2/00101.
Kim, M. S., Kim, S. H., Park, S. J., Sung, M. J., Park, J., Hwang, J. T., Yang, H. J., Kim, S., Seo, D., & Shin, S. S. (2017). Ginseng berry improves hyperglycemia by downregulating hepatic gluconeogenesis and steatosis in mice with diet-induced type 2 diabetes. Journal of Functional Foods, 35, 295–302. https://doi.org/10.1016/j.jff.2017.05.050.
Koliaki, C., Szendroedi, J., Kaul, K., Jelenik, T., Nowotny, P., Jankowiak, F., Herder, C., Carstensen, M., Krausch, M., & Knoefel, W. T. (2015). Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metabolism, 21(5), 739–746. https://doi.org/10.1016/j.cmet.2015.04.004.
Mansouri, A., Gattolliat, C. H., & Asselah, T. (2018). Mitochondrial dysfunction and signaling in chronic liver diseases. Gastroenterology, 155(3), 629–647. https://doi.org/10.1053/j.gastro.2018.06.083.
Monton, M. R. N., & Soga, T. (2007). Metabolome analysis by capillary electrophoresis–mass spectrometry. Journal of Chromatography A, 1168(1–2), 237–246. https://doi.org/10.1016/j.chroma.2007.02.065.
Murakami, S., Fujita, M., Nakamura, M., Sakono, M., Nishizono, S., Sato, M., Imaizumi, K., Mori, M., & Fukuda, N. (2016). Taurine ameliorates cholesterol metabolism by stimulating bile acid production in high-cholesterol‐fed rats. Clinical and Experimental Pharmacology and Physiology, 43(3), 372–378. https://doi.org/10.1111/1440-1681.12534.
Okabe, K., Yaku, K., Tobe, K., & Nakagawa, T. (2019). Implications of altered NAD metabolism in metabolic disorders. Journal of Biomedical Science, 26(1), 34. https://doi.org/10.1016/j.redox.2019.101363.
Park, E. Y., Kim, H. J., Kim, Y. K., Park, S. U., Choi, J. E., Cha, J. Y., & Jun, H. S. (2012). Increase in insulin secretion induced by panax ginseng berry extracts contributes to the amelioration of hyperglycemia in Streptozotocininduced diabetic mice. Journal of Ginseng Research, 36(2), 153. https://doi.org/10.5142/jgr.2012.36.2.153.
Park, H. S., Hur, H. J., Kim, S. H., Park, S. J., Hong, M. J., Sung, M. J., Kwon, D. Y., & Kim, M. S. (2016). Biochanin A improves hepatic steatosis and insulin resistance by regulating the hepatic lipid and glucose metabolic pathways in diet-induced obese mice. Molecular Nutrition & food Research, 60(9), 1944–1955. https://doi.org/10.1002/mnfr.201500689.
Patel, D., & N Witt, S. (2017). Ethanolamine and phosphatidylethanolamine: Partners in health and disease. Oxidative Medicine and Cellular Longevity, 2017. https://doi.org/10.1155/2017/4829180.
Patra, K. C., & Hay, N. (2014). The pentose phosphate pathway and cancer. Trends in Biochemical Sciences, 39(8), 347–354. https://doi.org/10.1016/j.tibs.2014.06.005.
Petrosillo, G., Portincasa, P., Grattagliano, I., Casanova, G., Matera, M., Ruggiero, F. M., Ferri, D., & Paradies, G. (2007). Mitochondrial dysfunction in rat with nonalcoholic fatty liver: Involvement of complex I, reactive oxygen species and cardiolipin. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767(10), 1260–1267. https://doi.org/10.1016/j.bbabio.2007.07.011.
Ramautar, R. (2016). Capillary electrophoresis–mass spectrometry for clinical metabolomics. Advances in Clinical Chemistry, 74, 1–34. https://doi.org/10.1016/bs.acc.2015.12.002.
Ramautar, R., Demirci, A., & de Jong, G. J. (2006). Capillary electrophoresis in metabolomics. TrAC Trends in Analytical Chemistry, 25(5), 455–466. https://doi.org/10.1016/j.trac.2006.02.004.
Rui, L. (2011). Energy metabolism in the liver. Comprehensive Physiology, 4(1), 177–197. https://doi.org/10.1002/cphy.c130024.
Soga, T., Ohashi, Y., Ueno, Y., Naraoka, H., Tomita, M., & Nishioka, T. (2003). Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. Journal of Proteome Research, 2(5), 488–494. https://doi.org/10.1021/pr034020m.
Sun, H., Jiang, T., Wang, S., He, B., Zhang, Y., Piao, D., Yu, C., Wu, N., & Han, P. (2013). The effect of LXRα, ChREBP and Elovl6 in liver and white adipose tissue on medium-and long-chain fatty acid diet-induced insulin resistance. Diabetes Research and Clinical Practice, 102(3), 183–192. https://doi.org/10.1016/j.diabres.2013.10.010.
Virmani, M. A., & Cirulli, M. (2022). The role of l-Carnitine in Mitochondria, Prevention of metabolic inflexibility and disease initiation. International Journal of Molecular Sciences, 23(5), 2717. https://doi.org/10.3390/ijms23052717.
Wamelink, M., Struys, E., & Jakobs, C. (2008). The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: A review. Journal of Inherited Metabolic Disease: Official Journal of the Society for the Study of Inborn Errors of Metabolism, 31(6), 703–717. https://doi.org/10.1007/s10545-008-1015-6.
Wang, C. Z., Zhang, B., Song, W. X., Wang, A., Ni, M., Luo, X., Aung, H. H., Xie, J. T., Tong, R., & He, T. C. (2006). Steamed American ginseng berry: Ginsenoside analyses and anticancer activities. Journal of Agricultural and Food Chemistry, 54(26), 9936–9942. https://doi.org/10.1021/jf062467k.
Xie, J., Wu, J., Mehendale, S., Aung, H., & Yuan, C. S. (2004). Anti-hyperglycemic effect of the polysaccharides fraction from American ginseng berry extract in ob/ob mice. Phytomedicine, 11(2–3), 182–187. https://doi.org/10.1078/0944-7113-00325.
Yen, W. C., Wu, Y. H., Wu, C. C., Lin, H. R., Stern, A., Chen, S. H., Shu, J. C., & Chiu, D. T. Y. (2020). Impaired inflammasome activation and bacterial clearance in G6PD deficiency due to defective NOX/p38 MAPK/AP-1 redox signaling. Redox Biology, 28, 101363. https://doi.org/10.1016/j.redox.2019.101363.
Zhang, W., & Ramautar, R. (2021). CE-MS for metabolomics: Developments and applications in the period 2018–2020. Electrophoresis, 42(4), 381–401. https://doi.org/10.1002/elps.202000203.
Acknowledgements
This research was supported by the Research Program (E0220602-03) of the Korea Food Research Institute, funded by the Ministry of Science and ICT, and partly R&D program of MOTIE/KIAT (N0000697).
Author information
Authors and Affiliations
Contributions
Myung-Sunny Kim, Haeng Jeon Hur, and Kyun-Hee Lee conceived and designed the research. Mi Jeong Sung and Ae Sin Lee performed Material preparation. Kyun-Hee Lee and Moonju Hong conducted experiments. Haeng Jeon Hur, Min Jung Kim and Hye Jeong Yang contributed new reagents or analytical tools. Kyun-Hee Lee and Moonju Hong analyzed data. Kyun-Hee Lee and Myung-Sunny Kim wrote the manuscript. All of the authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lee, KH., Hong, M., Hur, H.J. et al. Metabolomic profiling analysis reveals the benefits of ginseng berry intake on mitochondrial function and glucose metabolism in the liver of obese mice. Metabolomics 20, 96 (2024). https://doi.org/10.1007/s11306-024-02152-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11306-024-02152-9