Skip to main content

Advertisement

Log in

Using metabolomics to understand stress responses in Lactic Acid Bacteria and their applications in the food industry

  • Review Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Background

Lactic Acid Bacteria (LAB) are commonly used as starter cultures, probiotics, to produce lactic acid and other useful compounds, and even as natural preservatives. For use in any food product however, LAB need to survive the various stresses they encounter in the environment and during processing. Understanding these mechanisms may enable direction of LAB biochemistry with potential beneficial impact for the food industry.

Aim of review

To give an overview of the use of LAB in the food industry and then generate a deeper biochemical understanding of LAB stress response mechanisms via metabolomics, and methods of screening for robust strains of LAB.

Key scientific concepts of review

Uses of LAB in food products were assessed and factors which contribute to survival and tolerance in LAB investigated. Changes in the metabolic profiles of LAB exposed to stress were found to be associated with carbohydrates, amino acids and fatty acid levels and these changes were proposed to be a result of the bacteria trying to maintain cellular homeostasis in response to external conditions and minimise cellular damage from reactive oxygen species. This correlates with morphological analysis which shows that LAB can undergo cell elongation and shortening, as well as thinning and thickening of cell membranes, when exposed to stress. It is proposed that these innate strategies can be utilised to minimise negative effects caused by stress through selection of intrinsically robust strains, genetic modification and/or prior exposure to sublethal stress. This work demonstrates the utility of metabolomics to the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

This is a review paper so there is no raw data.

References

  • Abraham, B. P., & Quigley, E. M. M. (2017). Probiotics in inflammatory bowel disease. Gastroenterology Clinics of North America, 46, 769–782.

    Article  PubMed  Google Scholar 

  • Acedo, J. Z., van Belkum, M. J., Lohans, C. T., McKay, R. T., Miskolzie, M., & Vederas, J. C. (2015). Solution structure of acidocin B, a circular bacteriocin produced by Lactobacillus acidophilus M46. Applied and Environmental Microbiology, 81, 2910–2918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akabanda, F., Owusu-Kwarteng, J., Tano-Debrah, K., Parkouda, C., & Jespersen, L. (2014). The use of lactic acid bacteria starter culture in the production of nunu, a spontaneously fermented milk product in Ghana. International Journal of Food Sciences and Nutrition, 2014, 721067.

    Google Scholar 

  • Arques, J. L., Rodriguez, E., Langa, S., Landete, J. M., & Medina, M. (2015). Antimicrobial activity of lactic acid bacteria in dairy products and gut: Effect on pathogens. BioMed Research International, 2015, 584183.

    Article  PubMed  PubMed Central  Google Scholar 

  • Asaduzzaman, S. M., & Sonomoto, K. (2009). Lantibiotics: Diverse activities and unique modes of action. Journal of Bioscience and Bioengineering, 107, 475–487.

    Article  CAS  PubMed  Google Scholar 

  • Berbegal, C., Pena, N., Russo, P., Grieco, F., Pardo, I., Ferrer, S., Spano, G., & Capozzi, V. (2016). Technological properties of Lactobacillus plantarum strains isolated from grape must fermentation. Food Microbiology, 57, 187–194.

    Article  CAS  PubMed  Google Scholar 

  • Bingol, K., Bruschweiler-Li, L., Yu, C., Somogyi, A., Zhang, F., & Bruschweiler, R. (2015). Metabolomics beyond spectroscopic databases: A combined MS/NMR strategy for the rapid identification of new metabolites in complex mixtures. Analytical Chemistry, 87, 3864–3870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blake, K. L., Randall, C. P., & O’Neill, A. J. (2011). In vitro studies indicate a high resistance potential for the lantibiotic nisin in Staphylococcus aureus and define a genetic basis for nisin resistance. Antimicrobial Agents and Chemotheraphy, 55, 2362–2368.

    Article  CAS  Google Scholar 

  • Boor, K. J. (2006). Bacterial stress responses: What doesn’t kill them can make then stronger. PLoS Biology, 4, e23–e23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Calderini, E., Celebioglu, H. U., Villarroel, J., Jacobsen, S., Svensson, B., & Pessione, E. (2017). Comparative proteomics of oxidative stress response of Lactobacillus acidophilus NCFM reveals effects on DNA repair and cysteine de novo synthesis. Proteomics. https://doi.org/10.1002/pmic.201600178

    Article  PubMed  Google Scholar 

  • Cardenas, N., Calzada, J., Peiroten, A., Jimenez, E., Escudero, R., Rodriguez, J. M., Medina, M., & Fernandez, L. (2014). Development of a potential probiotic fresh cheese using two Lactobacillus salivarius strains isolated from human milk. BioMed Research International, 2014, 801918.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapot-Chartier, M. P., & Kulakauskas, S. (2014). Cell wall structure and function in lactic acid bacteria. Microbial Cell Factories, 13, S9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chávez, B. E., & Ledeboer, A. M. (2007). Drying of probiotics: Optimization of formulation and process to enhance storage survival. Drying Technology, 25, 1193–1201.

    Article  Google Scholar 

  • Chen, H., & Hoover, D. G. (2003). Bacteriocins and their food applications. Comprehensive Reviews in Food Science and Food Safety, 2, 82–100.

    Article  CAS  Google Scholar 

  • Chiang, S. S., & Pan, T. M. (2012). Beneficial effects of Lactobacillus paracasei subsp. paracasei NTU 101 and its fermented products. Applied Microbiology and Biotechnology, 93, 903–916.

    Article  CAS  PubMed  Google Scholar 

  • Chileveru, H. R., Lim, S. A., Chairatana, P., Wommack, A. J., Chiang, I. L., & Nolan, E. M. (2015). Visualizing attack of Escherichia coli by the antimicrobial peptide human defensin 5. Biochemistry, 54, 1767–1777.

    Article  CAS  PubMed  Google Scholar 

  • Collins, B., Curtis, N., Cotter, P. D., Hill, C., & Ross, R. P. (2010). The ABC transporter AnrAB contributes to the innate resistance of Listeria monocytogenes to nisin, bacitracin, and various β-lactam antibiotics. Antimicrobial Agents and Chemotherapy, 54, 4416–4423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conlan, B. F., Gillon, A. D., Craik, D. J., & Anderson, M. A. (2010). Circular proteins and mechanisms of cyclization. Biopolymers, 94, 573–583.

    Article  CAS  PubMed  Google Scholar 

  • Cotter, P. D., & Hill, C. (2003). Surviving the acid test: Responses of gram-positive bacteria to low pH. Microbiology and Molecular Biology Reviews, 67, 429–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotter, P. D., Hill, C., & Ross, R. P. (2005). Bacteriocins: Developing innate immunity for food. Nature Reviews Microbiology, 3, 777–788.

    Article  CAS  PubMed  Google Scholar 

  • Craik, D. J., Mylne, J. S., & Daly, N. L. (2010). Cyclotides: Macrocyclic peptides with applications in drug design and agriculture. Cellular and Molecular Life Sciences, 67, 9–16.

    Article  CAS  PubMed  Google Scholar 

  • Cubas-Cano, E., González-Fernández, C., Ballesteros, M., & Tomás-Pejó, E. (2018). Biotechnological advances in lactic acid production by lactic acid bacteria: Lignocellulose as novel substrate. Biofuels, Bioproducts and Biorefining, 12, 290–303.

    Article  CAS  Google Scholar 

  • de Arauz, L. J., Jozala, A. F., Mazzola, P. G., & Vessoni Penna, T. C. (2009). Nisin biotechnological production and application: A review. Trends in Food Science and Technology, 20, 146–154.

    Article  Google Scholar 

  • de la Torre, I., Acedos, M. G., Ladero, M., & Santos, V. E. (2019). On the use of resting L. delbrueckii spp. delbrueckii cells for d-lactic acid production from orange peel wastes hydrolysates. Biochemical Engineering Journal, 145, 162–169.

    Article  Google Scholar 

  • De Man, J. C., Rogosa, M., & Sharpe, M. E. (1960). A medium for the cultivation of Lactobacilli. Journal of Applied Bacteriology, 23, 130–135.

    Article  Google Scholar 

  • Devi, A., & Anu-Appaiah, K. A. (2018). Diverse physiological and metabolic adaptations by Lactobacillus plantarum and Oenococcus oeni in response to the phenolic stress during wine fermentation. Food Chemistry, 268, 101–109.

    Article  CAS  PubMed  Google Scholar 

  • Elie, C. R., David, G., & Schmitzer, A. R. (2015). Strong antibacterial properties of anion transporters: A result of depolarization and weakening of the bacterial membrane. Journal of Medicinal Chemistry, 58, 2358–2366.

    Article  CAS  PubMed  Google Scholar 

  • Elnakady, Y. A., Chatterjee, I., Bischoff, M., Rohde, M., Josten, M., Sahl, H.-G., Herrmann, M., & Müller, R. (2016). Investigations to the antibacterial mechanism of action of kendomycin. PLoS ONE, 11, e0146165.

    Article  PubMed  Google Scholar 

  • Endo, A., Sasaki, F., Maeno, S., Kanesaki, Y., Hamaguchi, Y., Torres, G. A., Tomita, S., & Nakagawa, J. (2018). In vitro and in silico characterisation of Lactobacillus paraplantarum D2-1, a starter culture for soymilk fermentation. International Journal of Food Sciences and Nutrition, 69, 857–869.

    Article  CAS  PubMed  Google Scholar 

  • Favaro, L., Barretto Penna, A. L., & Todorov, S. D. (2015). Bacteriocinogenic LAB from cheeses—application in biopreservation? Trends in Food Science and Technology, 41, 37–48.

    Article  CAS  Google Scholar 

  • Fernie, A. R., Carrari, F., & Sweetlove, L. J. (2004). Respiratory metabolism: Glycolysis, the TCA cycle and mitochondrial electron transport. Current Opinion in Plant Biology, 7, 254–261.

    Article  CAS  PubMed  Google Scholar 

  • Filannino, P., Gobbetti, M., De Angelis, M., & Di Cagno, R. (2014). Hydroxycinnamic acids used as external acceptors of electrons: An energetic advantage for strictly heterofermentative lactic acid bacteria. Applied and Environmental Microbiology, 80, 7574–7582.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fior Markets. (2020). Nisin market by application (poultry and seafood products, dairy products, meat, bakery and confectionery products, beverages, canned and frozen food products, and others), region, global industry analysis, market size, share, growth, trends, and forecast 2020 to 2027 (p. 228).

  • Frazer, A. C., Sharratt, M., & Hickman, J. R. (1962). The biological effects of food additives. I. Nisin. Journal of the Science of Food and Agriculture, 13, 32–42.

    Article  CAS  Google Scholar 

  • Fuentes, M. C., Lajo, T., Carrion, J. M., & Cune, J. (2013). Cholesterol-lowering efficacy of Lactobacillus plantarum CECT 7527, 7528 and 7529 in hypercholesterolaemic adults. The British Journal of Nutrition, 109, 1866–1872.

    Article  CAS  PubMed  Google Scholar 

  • Gale, E. F. (2006). The bacterial amino acid decarboxylases. In F. F. Nord (Ed.), Advances in enzymology and related areas of molecular biology (pp. 1–32). Wiley.

    Google Scholar 

  • Garde, S., Avila, M., Medina, M., & Nuñez, M. (2004). Fast induction of nisin resistance in Streptococcus thermophilus INIA 463 during growth in milk. International Journal of Food Microbiology, 96, 165–172.

    Article  CAS  PubMed  Google Scholar 

  • Gasbarrini, G., Bonvicini, F., & Gramenzi, A. (2016). Probiotics history. In Proceedings from the 8th probiotics, prebiotics & new foods for microbiota and human health, Rome, Italy (pp. S116–S119).

  • Ge, Q., Chen, S., Liu, R., Chen, L., Yang, B., Yu, H., Wu, M., Zhang, W., & Zhou, G. (2019). Effects of Lactobacillus plantarum NJAU-01 on the protein oxidation of fermented sausage. Food Chemisty, 295, 361–367.

    Article  CAS  Google Scholar 

  • Gionchetti, P., Rizzello, F., Lammers, K. M., Morselli, C., Sollazzi, L., Davies, S., Tambasco, R., Calabrese, C., & Campieri, M. (2006). Antibiotics and probiotics in treatment of inflammatory bowel disease. World Journal of Gastroenterology, 12, 3306–3313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golneshin, A., Gor, M. C., Van, T. T. H., May, B., Moore, R. J., & Smith, A. T. (2016). Bacteriocin polypeptides and uses thereof. Patent WO2016176729A1. World Intellectual Property Organization. Retrieved October 24, 2023, from https://patents.google.com/patent/WO2016176729A1/en

  • Gong, X., Yu, H., Chen, J., & Han, B. (2012). Cell surface properties of Lactobacillus salivarius under osmotic stress. European Food Research and Technology, 234, 671–678.

    Article  CAS  Google Scholar 

  • Goodacre, R., Vaidyanathan, S., Dunn, W. B., Harrigan, G. G., & Kell, D. B. (2004). Metabolomics by numbers: Acquiring and understanding global metabolite data. Trends in Biotechnology, 22, 245–252.

    Article  CAS  PubMed  Google Scholar 

  • Gor, M. C., Golneshin, A., Van, T. T. H., Moore, R. J., & Smith, A. T. (2020b). Cloning and functional expression of a food-grade circular bacteriocin, Plantacyclin B21AG, in probiotic Lactobacillus plantarum WCFS1. PLoS ONE, 15, e0232806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gor, M.-C., Vezina, B., McMahon, R. M., King, G. J., Panjikar, S., Rehm, B. H. A., Martin, J. L., & Smith, A. T. (2020a). Crystal structure and site-directed mutagenesis of circular bacteriocin plantacyclin B21AG reveals cationic and aromatic residues important for antimicrobial activity. Scientific Reports, 10, 17398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govender, M., Choonara, Y. E., Kumar, P., du Toit, L. C., van Vuuren, S., & Pillay, V. (2014). A review of the advancements in probiotic delivery: Conventional vs. non-conventional formulations for intestinal flora supplementation. An Official Journal of the American Association of Pharmaceutical Scientists, 15, 29–43.

    CAS  Google Scholar 

  • Grand View Research, I. (2018). Lactic acid market size worth USD 8.77 billion by 2025 | CAGR: 18.7%. Retrieved October 24, 2023, from https://www.grandviewresearch.com/press-release/global-lactic-acid-and-poly-lactic-acid-market

  • Groot, W., van Krieken, J., Sliekersl, O., & de Vos, S. (2022). Production and purification of lactic acid and lactide. In R. A. Auras, L.-T. Lim, S. E. M. Selke, & H. Tsuji (Eds.), Poly(lactic acid) (pp. 1–18). Wiley.

    Google Scholar 

  • Guandalini, S., Pensabene, L., Zikri, M. A., Dias, J. A., Casali, L. G., Hoekstra, H., Kolacek, S., Massar, K., Micetic-Turk, D., Papadopoulou, A., de Sousa, J. S., Sandhu, B., Szajewska, H., & Weizman, Z. (2000). Lactobacillus GG administered in oral rehydration solution to children with acute diarrhea: A multicenter European trial. Journal of Pediatric Gastroenterology and Nutrition, 30, 54–60.

    Article  CAS  PubMed  Google Scholar 

  • Guo, Y., Tian, X., Huang, R., Tao, X., Shah, N. P., Wei, H., & Wan, C. (2017). A physiological comparative study of acid tolerance of Lactobacillus plantarum ZDY 2013 and L. plantarum ATCC 8014 at membrane and cytoplasm levels. Annals of Microbiology, 67, 669–677.

    Article  Google Scholar 

  • Hales, K. G., Korey, C. A., Larracuente, A. M., & Roberts, D. M. (2015). Genetics on the fly: A primer on the Drosophila model system. Genetics, 201, 815–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamon, E., Horvatovich, P., Marchioni, E., Aoudé-Werner, D., & Ennahar, S. (2014). Investigation of potential markers of acid resistance in Lactobacillus plantarum by comparative proteomics. Journal of Applied Microbiology, 116, 134–144.

    Article  CAS  PubMed  Google Scholar 

  • Hasin, Y., Seldin, M., & Lusis, A. (2017). Multi-omics approaches to disease. Genome Biology, 18, 83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayek, S., & Ibrahim, S. (2013). Current limitations and challenges with lactic acid bacteria: A review. Food and Nutrition Sciences, 4, 73–87.

    Article  CAS  Google Scholar 

  • Herranz, C., Martinez, J. M., Rodriguez, J. M., Hernandez, P. E., & Cintas, L. M. (2001). Optimization of enterocin P production by batch fermentation of Enterococcus faecium P13 at constant pH. Applied Microbiology and Biotechnology, 56, 378–383.

    Article  CAS  PubMed  Google Scholar 

  • Heunis, T., Deane, S., Smit, S., & Dicks, L. M. (2014). Proteomic profiling of the acid stress response in Lactobacillus plantarum 423. Journal of Proteome Research, 13, 4028–4039.

    Article  CAS  PubMed  Google Scholar 

  • Higuchi, T., Hayashi, H., & Abe, K. (1997). Exchange of glutamate and gamma-aminobutyrate in a Lactobacillus strain. Journal of Bacteriology, 179, 3362–3364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, S., Gaucher, F., Cauty, C., Jardin, J., Le Loir, Y., Jeantet, R., Chen, X. D., & Jan, G. (2018). Growth in hyper-concentrated sweet whey triggers multi stress tolerance and spray drying survival in Lactobacillus casei BL23: From the molecular basis to new perspectives for sustainable probiotic production. Frontiers in Microbiology, 9, 2548–2548.

    Article  PubMed  PubMed Central  Google Scholar 

  • Insights., G. M. (2016). Probiotics market size to exceed USD 64 billion by 2023: Global Market Insights Inc. PR Newswire. Retrieved October 24, 2023, from https://www.prnewswire.com/news-releases/probiotics-market-size-to-exceed-usd-64-billion-by-2023-global-market-insights-inc-578769201.html

  • Isolauri, E., Juntunen, M., Rautanen, T., Sillanaukee, P., & Koivula, T. (1991). A human Lactobacillus strain (Lactobacillus casei sp strain GG) promotes recovery from acute diarrhea in children. Pediatrics, 88, 90–97.

    CAS  PubMed  Google Scholar 

  • Joint FAO/WHO Expert Committee on Food Additives (1969). Specifications for the identity and purity of food additives and their toxicological evaluation: Some antibiotics, twelfth report of the Joint FAO/WHO Expert Committee on Food Additives. Retrieved October 24, 2023, from https://www.who.int/publications/i/item/9241204303

  • Jones, O. A. H., & Cheung, V. L. (2007). An introduction to metabolomics and its potential application in veterinary science. Comparative Medicine, 57, 436–442.

    CAS  PubMed  Google Scholar 

  • Kawai, Y., Kemperman, R., Kok, J., & Saito, T. (2004). The circular bacteriocins gassericin A and circularin A. Current Protein and Peptide Science, 5, 393–398.

    Article  CAS  PubMed  Google Scholar 

  • Khemariya, P., Singh, S., Jaiswal, N., & Chaurasia, S. N. S. (2016). Isolation and identification of Lactobacillus plantarum from vegetable samples. Food Biotechnology, 30, 49–62.

    Article  CAS  Google Scholar 

  • Kim, M.-J., Lee, H.-W., Lee, M.-E., Roh, S. W., & Kim, T.-W. (2019). Mixed starter of Lactococcus lactis and Leuconostoc citreum for extending kimchi shelf-life. Journal of Microbiology, 57, 479–484.

    Article  CAS  PubMed  Google Scholar 

  • Komesu, A., Oliveira, J., Martins, L., Maciel, R. W., & Maciel Filho, R. (2017). Lactic acid production to purification: A review. BioResources, 12, 4364–4383.

    Article  CAS  Google Scholar 

  • Kumar, N., Kumar, V., Panwar, R., & Ram, C. (2017). Efficacy of indigenous probiotic Lactobacillus strains to reduce cadmium bioaccessibility—an in vitro digestion model. Environmental Science and Pollution Research International, 24, 1241–1250.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, N., Kumari, V., Ram, C., Thakur, K., & Tomar, S. K. (2018). Bio-prospectus of cadmium bioadsorption by lactic acid bacteria to mitigate health and environmental impacts. Applied Microbiology and Biotechnology, 102, 1599–1615.

    Article  CAS  PubMed  Google Scholar 

  • Lahtvee, P. J., Adamberg, K., Arike, L., Nahku, R., Aller, K., & Vilu, R. (2011). Multi-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates. Microbial Cell Factories, 10, 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leroy, F., & De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science & Technology, 15, 67–78.

    Article  CAS  Google Scholar 

  • Li, C., Ma, Y., Mi, Z., Huo, R., Zhou, T., Hai, H., Kwok, L.-Y., Sun, Z., Chen, Y., & Zhang, H. (2018). Screening for Lactobacillus plantarum strains that possess organophosphorus pesticide-degrading activity and metabolomic analysis of phorate degradation. Frontiers in Microbiology, 9, 2048–2048.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, S., Yu, X., & Beattie, G. A. (2013). Glycine betaine catabolism contributes to Pseudomonas syringae tolerance to hyperosmotic stress by relieving betaine-mediated suppression of compatible solute synthesis. Journal of Bacteriology, 195, 2415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, S., Gao, D., Liu, H., Wang, C., & Wen, J. (2018). Metabolomic and proteomic analysis of d-lactate-producing Lactobacillus delbrueckii under various fermentation conditions. Journal of Industrial Microbiology & Biotechnology, 45, 681–696.

    Article  CAS  Google Scholar 

  • Ma, X., Wang, G., Zhai, Z., Zhou, P., & Hao, Y. (2018). Global transcriptomic analysis and function identification of malolactic enzyme pathway of Lactobacillus paracasei L9 in response to bile stress. Frontiers in Microbiology, 9, 1978.

    Article  PubMed  PubMed Central  Google Scholar 

  • Malheiros, P. S., Sant’Anna, V., Todorov, S. D., & Franco, B. D. (2015). Optimization of growth and bacteriocin production by Lactobacillus sakei subsp. sakei 2a. Brazilian Journal of Microbiology, 46, 825–834.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McFarland, L. V., & Dublin, S. (2008). Meta-analysis of probiotics for the treatment of irritable bowel syndrome. World Journal of Gastroenterology, 14, 2650–2661.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meadows, J. A., & Wargo, M. J. (2015). Carnitine in bacterial physiology and metabolism. Microbiology, 161, 1161–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medeiros, R. S., Araújo, L. M., Queiroga Neto, V., Andrade, P. P., Melo, M. A., & Gonçalves, M. M. B. P. (2016). Identification of lactic acid bacteria isolated from artisanal Coalho cheese produced in the Brazilian Northeast. CyTA - Journal of Food, 14, 613–620.

    Article  CAS  Google Scholar 

  • Ming, T., Han, J., Li, Y., Lu, C., Qiu, D., Li, Y., Zhou, J., & Su, X. (2018). A metabolomics and proteomics study of the Lactobacillus plantarum in the grass carp fermentation. BMC Microbiology, 18, 216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhialdin, B. J., Meor Hussin, A. S., Kadum, H., Abdul Hamid, A., & Jaafar, A. H. (2021). Metabolomic changes and biological activities during the lacto-fermentation of jackfruit juice using Lactobacillus casei ATCC334. LWT, 141, 110940.

    Article  CAS  Google Scholar 

  • Muruzović, M. Ž, Mladenović, K. G., Žugić-Petrović, T. D., & Čomić, L. R. (2018). Characterization of lactic acid bacteria isolated from traditionally made Serbian Cheese and evaluation of their antagonistic potential against Enterobacteriaceae. Journal of Food Processing and Preservation, 42, e13577.

    Article  Google Scholar 

  • Pandey, N., Malik, R. K., Kaushik, J. K., & Singroha, G. (2013). Gassericin A: A circular bacteriocin produced by lactic acid bacteria Lactobacillus gasseri. World Journal of Microbiology & Biotechnology, 29, 1977–1987.

    Article  CAS  Google Scholar 

  • Papagianni, M. (2012). Metabolic engineering of lactic acid bacteria for the production of industrially important compounds. Computational and Structural Biotechnology Journal, 3, e201210003.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parlindungan, E., Dekiwadia, C., & Jones, O. A. H. (2021). Factors that influence growth and bacteriocin production in Lactiplantibacillus plantarum B21. Process Biochemistry, 107, 18–26.

    Article  CAS  Google Scholar 

  • Parlindungan, E., Dekiwadia, C., May, B. K., & Jones, O. A. H. (2019a). Nutrient stress as a means to enhance the storage stability of spray dried microencapsulated Lactobacillus plantarum B21. LWT, 111, 204–210.

    Article  CAS  Google Scholar 

  • Parlindungan, E., Dekiwadia, C., Tran, K. T., Jones, O. A., & May, B. K. (2018a). Morphological and ultrastructural changes in Lactobacillus plantarum B21 as an indicator of nutrient stress. LWT, 92, 556–563.

    Article  CAS  Google Scholar 

  • Parlindungan, E., Dekiwadia, C., Tran, K. T. M., Jones, O. A. H., & May, B. K. (2018b). Morphological and ultrastructural changes in Lactobacillus plantarum B21 as an indicator of nutrient stress. LWT - Food Science and Technology, 92, 556–563.

    Article  CAS  Google Scholar 

  • Parlindungan, E., May, B. K., & Jones, O. A. H. (2019). Metabolic insights into the effects of nutrient stress on Lactobacillus plantarum B21. Frontiers in Molecular Biosciences, 6, 75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peighambardoust, S. H., Golshan Tafti, A., & Hesari, J. (2011). Application of spray drying for preservation of lactic acid starter cultures: A review. Trends in Food Science and Technology, 22, 215–224.

    Article  CAS  Google Scholar 

  • Perez, R. H., Zendo, T., & Sonomoto, K. (2014). Novel bacteriocins from lactic acid bacteria (LAB): Various structures and applications. Microbial Cell Factories, 13(Suppl 1), S3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pessione, E. (2012). Lactic acid bacteria contribution to gut microbiota complexity: Lights and shadows. Frontiers in Cellular and Infection Microbiology, 2, https://doi.org/10.3389/fcimb.2012.00086

  • Piuri, M., Sanchez-Rivas, C., & Ruzal, S. M. (2005). Cell wall modifications during osmotic stress in Lactobacillus casei. Journal of Applied Microbiology, 98, 84–95.

    Article  CAS  PubMed  Google Scholar 

  • Putri, S. P., Nakayama, Y., Matsuda, F., Uchikata, T., Kobayashi, S., Matsubara, A., & Fukusaki, E. (2013). Current metabolomics: Practical applications. Journal of Bioscience and Bioengineering, 115, 579–589.

    Article  CAS  PubMed  Google Scholar 

  • Qi, N. L., Gong, X., Yang, C. L., Cheng, Z. H., Zhou, W., & Li, J. H. (2018). 1H NMR-based metabolic profile of Lactobacillus salivarius FDB89 under osmotic stress. Applied Ecology and Environmental Research, 16, 3489–500.

    Article  Google Scholar 

  • Reid, A. A., Champagne, C. P., Gardner, N., Fustier, P., & Vuillemard, J. C. (2007). Survival in food systems of Lactobacillus rhamnosus R011 microentrapped in whey protein gel particles. Journal of Food Science, 72, M031–M037.

    Article  PubMed  Google Scholar 

  • Ruiz-Ruiz, F., Mancera-Andrade, E. I., Parra-Saldivar, R., Keshavarz, T., & Iqbal, H. M. N. (2017). Drug delivery and cosmeceutical applications of poly-lactic acid based novel constructs—a review. Current Drug Metabolism, 18, 914–925.

    CAS  PubMed  Google Scholar 

  • Rungsirivanich, P., Parlindungan, E., O’Connor, P. M., Field, D., Mahony, J., Thongwai, N., & van Sinderen, D. (2021). Simultaneous production of multiple antimicrobial compounds by Bacillus velezensis ML122-2 isolated from Assam tea leaf [Camellia sinensis var. assamica (J.W.Mast.) Kitam.]. Frontiers in Microbiology, 12, 789362.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanhueza, E., Paredes-Osses, E., González, C. L., & García, A. (2015). Effect of pH in the survival of Lactobacillus salivarius strain UCO_979C wild type and the pH acid acclimated variant. Electronic Journal of Biotechnology, 18, 343–346.

    Article  Google Scholar 

  • Sani, M.-A., & Separovic, F. (2018). Antimicrobial peptide structures: From model membranes to live cells. Chemistry A European Journal, 24, 286–291.

    Article  CAS  PubMed  Google Scholar 

  • Santivarangkna, C., Kulozik, U., & Foerst, P. (2007). Alternative drying processes for the industrial preservation of lactic acid starter cultures. Biotechnology Progress, 23, 302–315.

    Article  CAS  PubMed  Google Scholar 

  • Sartor, R. B. (2004). Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: Antibiotics, probiotics, and prebiotics. Gastroenterology, 126, 1620–1633.

    Article  PubMed  Google Scholar 

  • Sawa, N., Zendo, T., Kiyofuji, J., Fujita, K., Himeno, K., Nakayama, J., & Sonomoto, K. (2009). Identification and characterization of lactocyclicin Q, a novel cyclic bacteriocin produced by Lactococcus sp. strain QU 12. Applied and Environmental Microbiology, 75, 1552–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt, C. (2004). Metabolomics takes its place as latest up-and-coming “omic” science. Journal of the National Cancer Institute, 96, 732–734.

    Article  PubMed  Google Scholar 

  • Senan, S., Prajapati, J. B., & Joshi, C. G. (2015). Whole-genome based validation of the adaptive properties of Indian origin probiotic Lactobacillus helveticus MTCC 5463. Journal of the Science of Food and Agriculture, 95, 321–328.

    Article  CAS  PubMed  Google Scholar 

  • Senz, M., van Lengerich, B., Bader, J., & Stahl, U. (2015). Control of cell morphology of probiotic Lactobacillus acidophilus for enhanced cell stability during industrial processing. International Journal of Food Microbiology, 192, 34–42.

    Article  CAS  PubMed  Google Scholar 

  • Sharif, S., Azizan, K. A., & Baharum, S. N. (2017). GC-MS based metabolomics analysis reveals the effects of different agitation speeds on the level of proteinogenic amino acids in Lactococcus lactis subsp. cremoris MG1363. Annals of Microbiology, 67, 383–389.

    Article  CAS  Google Scholar 

  • Shornikova, A. V., Casas, I. A., Isolauri, E., Mykkanen, H., & Vesikari, T. (1997). Lactobacillus reuteri as a therapeutic agent in acute diarrhea in young children. Journal of Pediatric Gastroenterology and Nutrition, 24, 399–404.

    Article  CAS  PubMed  Google Scholar 

  • Shtenberg, A. J., & Ignat’ev, A. D. (1970). Toxicological evaluation of some combination of food preservatives. Food Cosmetics Toxicology, 8, 369–380.

    Article  CAS  PubMed  Google Scholar 

  • Spano, G., & Massa, S. (2006). Environmental stress response in wine lactic acid bacteria: Beyond Bacillus subtilis. Critical Reviews in Microbiology, 32, 77–86.

    Article  CAS  PubMed  Google Scholar 

  • Steen, A., Palumbo, E., Deghorain, M., Cocconcelli, P. S., Delcour, J., Kuipers, O. P., Kok, J., Buist, G., & Hols, P. (2005). Autolysis of Lactococcus lactis is increased upon d-alanine depletion of peptidoglycan and lipoteichoic acids. Journal of Bacteriology, 187, 114–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streit, F., Delettre, J., Corrieu, G., & Beal, C. (2008). Acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus induces physiological responses at membrane and cytosolic levels that improves cryotolerance. Journal of Applied Microbiology, 105, 1071–1080.

    Article  CAS  PubMed  Google Scholar 

  • Suganthi, V., & Mohanasrinivasan, V. (2015). Optimization studies for enhanced bacteriocin production by Pediococcus pentosaceus KC692718 using response surface methodology. Journal of Food Science and Technology, 52, 3773–3783.

    CAS  PubMed  Google Scholar 

  • Sunny-Roberts, E. O., & Knorr, D. (2008). Evaluation of the response of Lactobacillus rhamnosus VTT E-97800 to sucrose-induced osmotic stress. Food Microbiology, 25, 183–189.

    Article  CAS  PubMed  Google Scholar 

  • Suo, F., Liu, J., Chen, J., Li, X., Solem, C., & Jensen, P. R. (2020). Efficient production of pyruvate using metabolically engineered Lactococcus lactis. Frontiers in Bioengineering and Biotechnology, 8, 611701.

    Article  PubMed  Google Scholar 

  • Suzuki-Iwashima, A., Matsuura, H., Iwasawa, A., & Shiota, M. (2020). Metabolomics analyses of the combined effects of lactic acid bacteria and Penicillium camemberti on the generation of volatile compounds in model mold-surface-ripened cheeses. Journal of Bioscience and Bioengineering, 129, 333–347.

    Article  CAS  PubMed  Google Scholar 

  • Szajewska, H., Kotowska, M., Mrukowicz, J. Z., Armanska, M., & Mikolajczyk, W. (2001). Efficacy of Lactobacillus GG in prevention of nosocomial diarrhea in infants. Journal of Pediatrics, 138, 361–365.

    Article  CAS  PubMed  Google Scholar 

  • Tang, H., Huang, W., & Yao, Y. F. (2023). The metabolites of lactic acid bacteria: Classification, biosynthesis and modulation of gut microbiota. Microbial Cell, 10, 49–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, H., Qian, B., Xia, B., Zhuan, Y., Yao, Y., Gan, R., & Zhang, J. (2018). Screening of lactic acid bacteria isolated from fermented Cornus officinalis fruits for probiotic potential. Journal of Food Safety, 38, e12565.

    Article  Google Scholar 

  • Tatulli, G., Cagliani, L. R., Sparvoli, F., Brasca, M., & Consonni, R. (2023). NMR-based metabolomic study on Phaseolus vulgaris flour fermented by lactic acid bacteria and yeasts. Molecules, 28, 4864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur, A., Panesar, P. S., & Saini, M. S. (2019). L(+)-lactic acid production by immobilized Lactobacillus casei using low cost agro-industrial waste as carbon and nitrogen sources. Waste and Biomass Valorization, 10, 1119–1129.

    Article  CAS  Google Scholar 

  • Tian, X. J., Jiang, A. L., Mao, Y. Q., Wu, B., He, M. X., Hu, W., Chen, J. H., & Li, W. J. (2019). Efficient l-lactic acid production from purified sweet sorghum juice coupled with soybean hydrolysate as nitrogen source by Lactobacillus thermophilus A69 strain. Journal of Chemical Technology and Biotechnology, 94, 1752–1759.

    Article  CAS  Google Scholar 

  • Todorov, S. D., Stojanovski, S., Iliev, I., Moncheva, P., Nero, L. A., & Ivanova, I. V. (2017). Technology and safety assessment for lactic acid bacteria isolated from traditional Bulgarian fermented meat product “lukanka.” Brazilian Journal of Microbiology, 48, 576–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomita, S., Saito, K., Nakamura, T., Sekiyama, Y., & Kikuchi, J. (2017). Rapid discrimination of strain-dependent fermentation characteristics among Lactobacillus strains by NMR-based metabolomics of fermented vegetable juice. PLoS ONE, 12, e0182229.

    Article  PubMed  PubMed Central  Google Scholar 

  • Towle, D. W. (1984). Regulatory functions of Na++K+-ATPase in marine and estuarine animals. In A. Pequeux, R. Gilles, & L. Bolis (Eds.), Osmoregulation in estuarine and marine animals: Proceedings of the invited lectures to a symposium organized within the 5th conference of the European Society for Comparative Physiology and Biochemistry, Taormina, Sicily, Italy, 5–8 September 1983 (pp. 157–170). Springer.

  • Tran, K. (2010). Investigation of the native microflora and isolation of protective starter culture for a traditional Vietnamese fermented meat. PhD Thesis, RMIT University.

    Google Scholar 

  • Van Der Kaaij, H., Zink, R., & Mollet, B. (2000). Use of l-alanine as a sweetener. Patent WO2000049881A1. World Intellectual Property Organization. Retrieved October 24, 2023, from https://patents.google.com/patent/WO2000049881A1/en

  • Verluyten, J., Leroy, F., & De Vuyst, L. (2004). Influence of complex nutrient source on growth of and curvacin a production by sausage isolate Lactobacillus curvatus LTH 1174. Applied and Environmental Microbiology, 70, 5081–5088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh, C. J., Guinane, C. M., Hill, C., Ross, R. P., O’Toole, P. W., & Cotter, P. D. (2015). In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project’s reference genome database. BMC Microbiology, 15, 183.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, R., Sun, J., Lassabliere, B., Yu, B., & Liu, S. Q. (2022). UPLC-Q-TOF-MS based metabolomics and chemometric analyses for green tea fermented with Saccharomyces boulardii CNCM I-745 and Lactiplantibacillus plantarum 299V. Curr Res Food Sci, 5, 471–478.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, W., He, J., Pan, D., Wu, Z., Guo, Y., Zeng, X., & Lian, L. (2018). Metabolomics analysis of Lactobacillus plantarum ATCC 14917 adhesion activity under initial acid and alkali stress. PLoS ONE, 13, e0196231.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Wu, J., Lv, M., Shao, Z., Hungwe, M., Wang, J., Bai, X., Xie, J., Wang, Y., & Geng, W. (2021). Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Frontiers in Bioengineering and Biotechnology, 9, 612285.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wayah, S. B., & Philip, K. (2018). Characterization, yield optimization, scale up and biopreservative potential of fermencin SA715, a novel bacteriocin from Lactobacillus fermentum GA715 of goat milk origin. Microbial Cell Factories, 17, 125.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, W., & Zhao, N. (2019). Metabolomics of lactic acid bacteria. In W. Chen (Ed.), Lactic acid bacteria: Omics and functional evaluation (pp. 167–182). Singapore: Springer.

    Google Scholar 

  • Yeluri Jonnala, B. R., McSweeney, P. L. H., Sheehan, J. J., & Cotter, P. D. (2018). Sequencing of the cheese microbiome and its relevance to industry. Frontiers in Microbiology, 9, 1020–1020.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ying, W. (2008). NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences. Antioxidants and Redox Signal, 10, 179–206.

    Article  CAS  Google Scholar 

  • Zhai, Q., Xiao, Y., Narbad, A., & Chen, W. (2018). Comparative metabolomic analysis reveals global cadmium stress response of Lactobacillus plantarum strains. Metallomics, 10, 1065–1077.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Murzello, C., Sun, Y., Kim, M. S., Xie, X., Jeter, R. M., Zak, J. C., Dowd, S. E., & Pare, P. W. (2010). Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Molecular Plant–Microbe Interaction, 23, 1097–1104.

    Article  CAS  Google Scholar 

  • Zhang, H., Yeh, C., Jin, Z., Ding, L., Liu, B. Y., Zhang, L., & Dannelly, H. K. (2018). Prospective study of probiotic supplementation results in immune stimulation and improvement of upper respiratory infection rate. Synthetic and Systems Biotechnology, 3, 113–120.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was sponsored by an Indonesian Endowment Fund for Education (LPDP) Scholarship, by the Ministry of Finance of the Republic of Indonesia (Grant Number 20150822023826) awarded to the first author.

Author information

Authors and Affiliations

Authors

Contributions

EP: Conceived the idea for the work, gathered, analysed and interpreted the data and wrote the first draft of the manuscript, and prepared Figs. 1, 2, 4 and 5 and Table 1. OAHJ: critically evaluated and substantially edited the manuscript, adding new data to the paper and new insight to the interpretation, conclusions and recommendations, and prepared Fig. 3.

Corresponding author

Correspondence to Oliver A. H. Jones.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This review article does not contain any studies with human and/or animal participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parlindungan, E., Jones, O.A.H. Using metabolomics to understand stress responses in Lactic Acid Bacteria and their applications in the food industry. Metabolomics 19, 99 (2023). https://doi.org/10.1007/s11306-023-02062-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-023-02062-2

Keywords

Navigation