Skip to main content
Log in

Ischemia promotes acyl-CoAs dephosphorylation and propionyl-CoA accumulation

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Our untargeted metabolic data unveiled that Acyl-CoAs undergo dephosphorylation, however little is known about these novel metabolites and their physiology/pathology relevance.

Objectives

To understand the relationship between acyl-CoAs dephosphorylation and energy status as implied in our previous work, we seek to investigate how ischemia (energy depletion) triggers metabolic changes, specifically acyl-CoAs dephosphorylation in this work.

Methods

Rat hearts were isolated and perfused in Langendorff mode for 15 min followed by 0, 5, 15, and 30 minutes of global ischemia. The heart tissues were harvested for metabolic analysis.

Results

As expected, ATP and phosphocreatine were significantly decreased during ischemia. Most short- and medium-chain acyl-CoAs progressively increased with ischemic time from 0 to 15 min, whereas a 30-minute ischemia did not lead to further change. Unlike other acyl-CoAs, propionyl-CoA accumulated progressively in the hearts that underwent ischemia from 0 to 30 min. Progressive dephosphorylation occurred to all assayed acyl-CoAs and free CoA regardless their level changes during the ischemia.

Conclusion

The present work further confirms that dephosphorylation of acyl-CoAs is an energy-dependent process and how this dephosphorylation is mediated warrants further investigations. It is plausible that dephosphorylation of acyl-CoAs and limited anaplerosis are involved in ischemic injuries to heart. Further investigations are warranted to examine the mechanisms of acyl-CoA dephosphorylation and how the dephosphorylation is possibly involved in ischemic injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Askenasy, N. (2001). Glycolysis protects sarcolemmal membrane integrity during total ischemia in the rat heart. Basic Research In Cardiology, 96, 612–622.

    Article  CAS  PubMed  Google Scholar 

  • Broderick, T. L., Paulson, D. J., & Gillis, M. (2004). Effects of propionyl-carnitine on mitochondrial respiration and post-ischaemic cardiac function in the ischaemic underperfused diabetic rat heart. Drugs In R&D, 5, 191–201.

    Article  CAS  Google Scholar 

  • Buja, L. M. (2022). Pathobiology of Myocardial Ischemia and Reperfusion Injury: Models, Modes, Molecular Mechanisms, Modulation and Clinical Applications.Cardiol Rev.

  • Deng, S., Zhang, G. F., Kasumov, T., Roe, C. R., & Brunengraber, H. (2009). Interrelations between C4 ketogenesis, C5 ketogenesis, and anaplerosis in the perfused rat liver. Journal of Biological Chemistry, 284, 27799–27807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feuvray, D., & Leblond, Y. (1984). Metabolism of long chain fatty acids in the normal and pathologic heart: effects of ischemia. Diabete Et Metabolisme, 10, 316–323.

    CAS  PubMed  Google Scholar 

  • Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226, 497–509.

    Article  CAS  PubMed  Google Scholar 

  • Jennings, R. B. (2013). Historical perspective on the pathology of myocardial ischemia/reperfusion injury. Circ Res, 113, 428–438.

    Article  CAS  PubMed  Google Scholar 

  • Kerner, J., Minkler, P. E., Lesnefsky, E. J., & Hoppel, C. L. (2014). Fatty acid chain elongation in palmitate-perfused working rat heart: mitochondrial acetyl-CoA is the source of two-carbon units for chain elongation. Journal Of Biological Chemistry, 289, 10223–10234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Q., Zhang, S., Berthiaume, J. M., Simons, B., & Zhang, G. F. (2014). Novel approach in LC-MS/MS using MRM to generate a full profile of acyl-CoAs: discovery of acyl-dephospho-CoAs. Journal of Lipid Research, 55, 592–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Q., Deng, S., Ibarra, R. A., Anderson, V. E., Brunengraber, H., & Zhang, G. F. (2015). Multiple mass isotopomer tracing of acetyl-CoA metabolism in Langendorff-perfused rat hearts: channeling of acetyl-CoA from pyruvate dehydrogenase to carnitine acetyltransferase. Journal of Biological Chemistry, 290, 8121–8132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay, R. T., Dieckmann, S., Krzyzanska, D., Manetta-Jones, D., West, J. A., Castro, C., Griffin, J. L., & Murray, A. J. (2021). beta-hydroxybutyrate accumulates in the rat heart during low-flow ischaemia with implications for functional recovery. Elife 10.

  • Marquis, N. R., & Fritz, I. B. (1965). The distribution of Carnitine, Acetylcarnitine, and Carnitine Acetyltransferase in Rat Tissues. Journal Of Biological Chemistry, 240, 2193–2196.

    Article  CAS  PubMed  Google Scholar 

  • Millington, D. S., & Stevens, R. D. (2011). Acylcarnitines: analysis in plasma and whole blood using tandem mass spectrometry. Methods In Molecular Biology, 708, 55–72.

    Article  CAS  PubMed  Google Scholar 

  • Newman, J. C., & Verdin, E. (2017). beta-hydroxybutyrate: A Signaling Metabolite. Annual Review Of Nutrition, 37, 51–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowbar, A. N., Gitto, M., Howard, J. P., Francis, D. P., & Al-Lamee, R. (2019). Mortality from ischemic heart disease. Circulation. Cardiovascular Quality And Outcomes, 12, e005375.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohsuzu, F., Bessho, M., Yanagida, S., Sakata, N., Takayama, E., & Nakamura, H. (1994). Comparative measurement of myocardial ATP and creatine phosphate by two chemical extraction methods and 31P-NMR spectroscopy. Journal Of Molecular And Cellular Cardiology, 26, 203–210.

    Article  CAS  PubMed  Google Scholar 

  • Paulson, D. J., Schmidt, M. J., Traxler, J. S., Ramacci, M. T., & Shug, A. L. (1984). Improvement of myocardial function in diabetic rats after treatment with L-carnitine. Metabolism, 33, 358–363.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz, M., Labarthe, F., Fortier, A., Bouchard, B., Thompson Legault, J., Bolduc, V., Rigal, O., Chen, J., Ducharme, A., Crawford, P. A., Tardif, J. C., & Rosiers, D., C (2017). Circulating acylcarnitine profile in human heart failure: a surrogate of fatty acid metabolic dysregulation in mitochondria and beyond. American Journal Of Physiology Heart And Circulatory Physiology, 313, H768–H781.

    Article  CAS  PubMed  Google Scholar 

  • Savic, D., Ball, V., Curtis, M. K., Fialho, S., Timm, M. D. L., Hauton, K. N., West, D., Griffin, J., Heather, J., L.C. and, & Tyler, D. J. (2021). L-Carnitine Stimulates In Vivo Carbohydrate Metabolism in the Type 1 Diabetic Heart as Demonstrated by Hyperpolarized MRI. Metabolites 11.

  • Shah, A. A., Craig, D. M., Sebek, J. K., Haynes, C., Stevens, R. C., Muehlbauer, M. J., Granger, C. B., Hauser, E. R., Newby, L. K., Newgard, C. B., Kraus, W. E., Hughes, G. C., & Shah, S. H. (2012). Metabolic profiles predict adverse events after coronary artery bypass grafting. Journal Of Thoracic And Cardiovascular Surgery, 143, 873–878.

    Article  CAS  PubMed  Google Scholar 

  • Silva, M. F., Ijlst, L., Allers, P., Jakobs, C., Duran, M., de Almeida, I. T., & Wanders, R. J. (2004). Valproyl-dephosphoCoA: a novel metabolite of valproate formed in vitro in rat liver mitochondria. Drug Metabolism And Disposition, 32, 1304–1310.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan, B., Baratashvili, M., van der Zwaag, M., Kanon, B., Colombelli, C., Lambrechts, R. A., Schaap, O., Nollen, E. A., Podgorsek, A., Kosec, G., Petkovic, H., Hayflick, S., Tiranti, V., Reijngoud, D. J., Grzeschik, N. A., & Sibon, O. C. (2015). Extracellular 4’-phosphopantetheine is a source for intracellular coenzyme A synthesis. Nature Chemical Biology, 11, 784–792.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J. M., Chu, Y., Li, W., Wang, X. Y., Guo, J. H., Yan, L. L., Ma, X. H., Ma, Y. L., Yin, Q. H., & Liu, C. X. (2014). Simultaneous determination of creatine phosphate, creatine and 12 nucleotides in rat heart by LC-MS/MS. Journal Of Chromatography. B, Analytical Technologies In The Biomedical And Life Sciences, 958, 96–101.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Wang, Z., Zhou, L., Shi, X., & Xu, G. (2017). Comprehensive analysis of Short-, Medium-, and long-chain acyl-coenzyme A by Online Two-Dimensional Liquid Chromatography/Mass Spectrometry. Analytical Chemistry, 89, 12902–12908.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Christopher, B. A., Wilson, K. A., Muoio, D., McGarrah, R. W., Brunengraber, H., & Zhang, G. F. (2018). Propionate-induced changes in cardiac metabolism, notably CoA trapping, are not altered by l-carnitine. American Journal Of Physiology. Endocrinology And Metabolism, 315, E622–E633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, G. F., Kombu, R. S., Kasumov, T., Han, Y., Sadhukhan, S., Zhang, J., Sayre, L. M., Ray, D., Gibson, K. M., Anderson, V. A., Tochtrop, G. P., & Brunengraber, H. (2009). Catabolism of 4-hydroxyacids and 4-hydroxynonenal via 4-hydroxy-4-phosphoacyl-CoAs. Journal Of Biological Chemistry, 284, 33521–33534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, G. F., Jensen, M. V., Gray, S. M., El, K., Wang, Y., Lu, D., Becker, T. C., Campbell, J. E., & Newgard, C. B. (2021). Reductive TCA cycle metabolism fuels glutamine- and glucose-stimulated insulin secretion. Cell Metab, 33, 804–817e5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This publication was made possible by AHA award 12GRNT12050453 to G.F.Z.

Funding

This study was supported by American Heart Association (Grant No. 12GRNT12050453)

Author information

Authors and Affiliations

Authors

Contributions

All authors listed have made a substantial, direct and intellectual contribution to the work and approved it for publication.

Corresponding author

Correspondence to Guo-Fang Zhang.

Ethics declarations

Conflict of interest

S.F.P. is currently employed by and owns stock in Merck.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 980.9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Berthiaume, J.M., Previs, S. et al. Ischemia promotes acyl-CoAs dephosphorylation and propionyl-CoA accumulation. Metabolomics 19, 12 (2023). https://doi.org/10.1007/s11306-023-01975-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-023-01975-2

Keywords

Navigation