Skip to main content

Advertisement

Log in

A multiple-metabolites model to predict preliminary renal injury induced by iodixanol based on UHPLC/Q-Orbitrap-MS and 1H-NMR

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Background & aims

There are some problems, such as unclear pathological mechanism, delayed diagnosis, and inaccurate therapeutic target of Contrast-induced acute kidney injury (CI-AKI). It is significantly important to find biomarkers and therapeutic targets that can indicate renal injury in the early stage of CI-AKI. This study aims to establish a multiple-metabolites model to predict preliminary renal injury induced by iodixanol and explore its pathogenesis.

Methods

Both UHPLC/Q-Orbitrap-MS and 1H-NMR methods were applied for urine metabolomics studies on two independent cohorts who suffered from a preliminary renal injury caused by iodixanol, and the multivariate statistical analysis and random forest (RF) algorithm were used to process the related date.

Results

In the discovery cohort (n = 169), 6 metabolic markers (leucine, indole, 5-hydroxy-L-tryptophan, N-acetylvaline, hydroxyhexanoycarnine, and kynurenic acid) were obtained by the cross-validation between the RF and liquid chromatography-mass spectrometry (LC–MS). Secondly, the 6 differential metabolites were confirmed by comparison of standard substance and structural identification of 1H-NMR. Subsequently, the multiple-metabolites model composed of the 6 biomarkers was validated in a validation cohort (n = 165).

Conclusions

The concentrations of leucine, indole, N-acetylvaline, 5-hydroxy-L-tryptophan, hydroxyhexanoycarnitine and kynurenic acid in urine were proven to be positively correlated with the degree of renal injury induced by iodixanol. The multiple-metabolites model based on these 6 biomarkers has a good predictive ability to predict early renal injury caused by iodixanol, provides treatment direction for injury intervention and a reference for reducing the incidence of clinical CI-AKI further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agus, A., Planchais, J., & Sokol, H. (2018). Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host & Microbe, 23, 716–724.

    Article  CAS  Google Scholar 

  • Andreucci, M., Faga, T., Pisani. A., et al. (2014). Acute kidney injury by radiographic contrast media: pathogenesis and prevention. BioMed Research International, 2014, 362725. https://doi.org/10.1155/2014/362725

    Article  PubMed  PubMed Central  Google Scholar 

  • Azzalini, L. (2016). The clinical significance and management implications of chronic total occlusion associated with surgical coronary artery revascularization. Canadian Journal of Cardiology, 32(11), 1286–1289.

    Article  PubMed  Google Scholar 

  • Bansal, T., Alaniz, R. C., Wood, T. K., et al. (2010). The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proceedings of the National Academy of Sciences USA, 107(1), 228–233.

    Article  CAS  Google Scholar 

  • Berger, M., Gray, J. A., & Roth, B. L. (2009). The expanded biology of serotonin. Annual Review of Medicine, 60, 355–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulangé, C. L., Rood, I. M., Posma, J. M., et al. (2019). NMR and MS urinary metabolic phenotyping in kidney diseases is fit-for-purpose in the presence of a protease inhibitor. Mol Omics., 15(1), 39–49.

    Article  PubMed  Google Scholar 

  • Cacciatore, S., & Loda, M. (2015). Innovation in metabolomics to improve personalized healthcare. Annals of the New York Academy of Sciences, 1346(1), 57–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caiazza, A., Russo, L., Sabbatini, M., et al. Hemodynamic and tubular changes induced by contrast media. BioMed Research International, p. 578974.

  • Cui, S., Li, L., Zhang, Y., et al. (2021). Machine learning identifies metabolic signatures that predict the risk of recurrent angina in remitted patients after percutaneous coronary intervention: A multicenter prospective cohort study. Advances Science (weinh)., 8(10), 2003893.

    Article  CAS  Google Scholar 

  • Denic, A., Lieske, J. C., Chakkera, H. A., et al. (2017). The substantial loss of nephrons in healthy human kidneys with aging. Journal of the American Society of Nephrology, 28(1), 313–320.

    Article  PubMed  Google Scholar 

  • Ebert, N., Jakob, O., Gaedeke, J., et al. (2017). Prevalence of reduced kidney function and albuminuria in older adults: The berlin initiative study. Nephrology, Dialysis, Transplantation, 32(6), 997–1005.

    CAS  PubMed  Google Scholar 

  • Esperanza, M. G., Wrobel, K., Ojeda, A. G., et al. (2020). Liquid chromatography-mass spectrometry untargeted metabolomics reveals increased levels of tryptophan indole metabolites in urine of metabolic syndrome patients. European Journal of Mass Spectrometry (chichester)., 26(6), 379–387.

    Article  CAS  Google Scholar 

  • Garrison, R. J., Kannel, W. B., Stokes, J., III., et al. (1987). Incidence and precursors of hypertension in young adults: The framingham offspring study. Preventive Medicine, 16, 235–251.

    Article  CAS  PubMed  Google Scholar 

  • Hall, M. E., do Carmo, J. M., da Silva, A. A., et al. (2014). Obesity, hypertension, and chronic kidney disease. International Journal of Nephrology and Renovascular Disease, 7, 75–88.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall, J. E., Mouton, A. J., da Silva, A. A., et al. (2021). Obesity, kidney dysfunction, and inflammation: Interactions in hypertension. Cardiovascular Research, 117(8), 1859–1876.

    Article  CAS  PubMed  Google Scholar 

  • Haq, M. F. U., Yip, C. S., & Arora, P. (2020). The conundrum of contrast-induced acute kidney injury. Journal of Thoracic Disease, 12(4), 1721–1727.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hiratsuka, C., Fukuwatari, T., & Shibata, K. (2012). Fate of dietary tryptophan in young Japanese women. International Journal of Tryptophan Research, 5, 33–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, J., Weinstein, S. J., Moore, S. C., et al. (2018). Serum metabolomic profiling of all-cause mortality: A prospective analysis in the Alpha-Tocopherol, Beta-Carotene cancer prevention (ATBC) study cohort. American Journal of Epidemiology, 187(8), 1721–1732.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huć, T., Nowinski, A., Drapala, A., et al. (2018). Indole and indoxyl sulfate, gut bacteria metabolites of tryptophan, change arterial blood pressure via peripheral and central mechanisms in rats. Pharmacological Research, 130, 172–179.

    Article  PubMed  Google Scholar 

  • Johnson, C. H., Ivanisevic, J., & Siuzdak, G. (2016). Metabolomics: Beyond biomarkers and towards mechanisms. Nature Reviews Molecular Cell Biology, 17(7), 451–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosaka, J., Lankadeva, Y. R., May, C. N., et al. (2016). Histopathology of septic acute kidney injury: A systematic review of experimental data. Critical Care Medicine, 44(9), e897–e903.

    Article  PubMed  Google Scholar 

  • Koyner, J. L., Garg, A. X., Coca, S. G., et al. (2012). Biomarkers predict progression of acute kidney injury after cardiac surgery. Journal of the American Society of Nephrology, 23(5), 905–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y. M., Zhang, J., Su, L. J., et al. (2019). Downregulation of TIMP2 attenuates sepsis-induced AKI through the NF-κB pathway. Biochimica Et Biophysica Acta, Molecular Basis of Disease, 1865(3), 558–569.

    Article  CAS  PubMed  Google Scholar 

  • Lugo-Huitrón, R., Blanco-Ayala, T., Ugalde-Muñiz, P., et al. (2011). On the antioxidant properties of kynurenic acid: Free radical scavenging activity and inhibition of oxidative stress. Neurotoxicology and Teratology, 33(5), 538–547.

    Article  PubMed  Google Scholar 

  • McCullough, P. A., Choi, J. P., Feghali, G. A., et al. (2016). Contrast-induced acute kidney injury. Journal of the American College of Cardiology, 68, 1465–1473.

    Article  PubMed  Google Scholar 

  • Moledina, D. G., Hall, I. E., Thiessen-Philbrook, H., et al. (2017). Performance of serum creatinine and kidney injury biomarkers for diagnosing histologic acute tubular injury. American Journal of Kidney Diseases, 70(6), 807–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nash, K., Hafeez, A., & Hou, S. (2002). Hospital-acquired renal insufficiency. American Journal of Kidney Diseases, 39(5), 930–936.

    Article  PubMed  Google Scholar 

  • Nicola, R., Shaqdan, K. W., Aran, K., et al. (2015). Contrast-induced nephropathy: Identifying the risks, choosing the right agent, and reviewing effective prevention and management methods. Current Problems in Diagnostic Radiology, 44(6), 501–504.

    Article  PubMed  Google Scholar 

  • Pisani, A., Riccio, E., Andreucci M., et al. (2013). Role of reactive oxygen species in pathogenesis of radiocontrast-induced nephropathy. BioMed Research International, 2013, 868321. https://doi.org/10.1155/2013/868321

    Article  PubMed  PubMed Central  Google Scholar 

  • Stacul, F., van der Molen, A. J., Reimer, P., et al. (2011). Contrast-induced nephropathy: Updated ESUR Contrast Media Safety Committee guidelines. European Radiology, 21(12), 2527–2541.

    Article  PubMed  Google Scholar 

  • Sun, H., Olson, K. C., Gao, C., et al. (2016). Catabolic defect of branched-chain amino acids promotes heart failure. Circulation, 133(21), 2038–2049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tepel, M., Aspelin, P., & Lameire, N. (2006). Contrast-induced nephropathy: A clinical and evidence-based approach. Circulation, 113(14), 1799–1806.

    Article  PubMed  Google Scholar 

  • Tsai, C. K., Yeh, T. S., Wu, R. C., et al. (2018). Metabolomic alterations and chromosomal instability status in gastric cancer. World Journal of Gastroenterology, 24(33), 3760–3769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tumlin, J., Stacul, F., Adam, A., et al. (2006). Pathophysiology of contrast-induced nephropathy. The American Journal of Cardiology, 98(6), 14–20.

    Article  Google Scholar 

  • Wang, G., Cao, K., Liu, K., et al. (2018). Kynurenic acid, an IDO metabolite, controls TSG-6-mediated immunosuppression of human mesenchymal stem cells. Cell Death and Differentiation, 25(7), 1209–1223.

    Article  CAS  PubMed  Google Scholar 

  • Zager, R. A., Johnson, A. C., & Hanson, S. Y. (2003). Radiographic contrast media-induced tubular injury: Evaluation of oxidant stress and plasma membrane integrity. Kidney International, 64(1), 128–139.

    Article  CAS  PubMed  Google Scholar 

  • Zhenyukh, O., Civantos, E., Ruiz-Ortega, M., et al. (2017). High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation. Free Radical Biology & Medicine, 104, 165–177.

    Article  CAS  Google Scholar 

Download references

Funding

The research was funded by the Major Program from the National Natural Sciences Foundation of China (82192914), Important Drug Development Fund, Ministry of Science and Technology of China (2019ZX09201005-002-007) and Tianjin Committee of Science and Technology, China (20ZYJDJC00120).

Author information

Authors and Affiliations

Authors

Contributions

LC collected and analyzed the experimental data. The manuscript was drafted by LC. LW and BC participated in research design. CW, MW and JL revised the paper. XG, ZZ, and LH guided the experiment and provided funding for the research. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiumei Gao, Zhu Zhang or Lifeng Han.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1226 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Wang, L., Chen, B. et al. A multiple-metabolites model to predict preliminary renal injury induced by iodixanol based on UHPLC/Q-Orbitrap-MS and 1H-NMR. Metabolomics 18, 85 (2022). https://doi.org/10.1007/s11306-022-01942-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-022-01942-3

Keywords

Navigation