Skip to main content

Advertisement

Log in

Metabolomics for exposure assessment and toxicity effects of occupational pollutants: current status and future perspectives

  • Review Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Work-related exposures to harmful agents or factors are associated with an increase in incidence of occupational diseases. These exposures often represent a complex mixture of different stressors, challenging the ability to delineate the mechanisms and risk factors underlying exposure-disease relationships. The use of omics measurement approaches that enable characterization of biological marker patterns provide internal indicators of molecular alterations, which could be used to identify bioeffects following exposure to a toxicant. Metabolomics is the comprehensive analysis of small molecule present in biological samples, and allows identification of potential modes of action and altered pathways by systematic measurement of metabolites.

Objectives

The aim of this study is to review the application of metabolomics studies for use in occupational health, with a focus on applying metabolomics for exposure monitoring and its relationship to occupational diseases.

Methods

PubMed, Web of Science, Embase and Scopus electronic databases were systematically searched for relevant studies published up to 2021.

Results

Most of reviewed studies included worker populations exposed to heavy metals such as As, Cd, Pb, Cr, Ni, Mn and organic compounds such as tetrachlorodibenzo-p-dioxin, trichloroethylene, polyfluoroalkyl, acrylamide, polyvinyl chloride. Occupational exposures were associated with changes in metabolites and pathways, and provided novel insight into the relationship between exposure and disease outcomes. The reviewed studies demonstrate that metabolomics provides a powerful ability to identify metabolic phenotypes and bioeffect of occupational exposures.

Conclusion

Continued application to worker populations has the potential to enable characterization of thousands of chemical signals in biological samples, which could lead to discovery of new biomarkers of exposure for chemicals, identify possible toxicological mechanisms, and improved understanding of biological effects increasing disease risk associated with occupational exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amorim, L. C. A., & L. Cardeal, Z. (2007). Breath air analysis and its use as a biomarker in biological monitoring of occupational and environmental exposure to chemical agents. Journal of Chromatography B, 853(1–2), 1–9.

    Article  CAS  Google Scholar 

  • Antonini, J. M., Leonard, S. S., Roberts, J. R., Solano-Lopez, C., Young, S.-H., Shi, X., & Taylor, M. D. (2005). Effect of stainless steel manual metal arc welding fume on free radical production, DNA damage, and apoptosis induction. Molecular and Cellular Biochemistry, 279(1–2), 17–23.

    Article  CAS  PubMed  Google Scholar 

  • Authority, E. F. S., Aguilera, J., Aguilera-Gomez, M., Barrucci, F., Cocconcelli, P. S., Davies, H., Denslow, N., Lou Dorne, J., Grohmann, L., & Herman, L. (2018). EFSA Scientific Colloquium 24–’omics in risk assessment: State of the art and next steps. EFSA Supporting Publications, 15(11), 1512E.

    Google Scholar 

  • Baker, M. G., Simpson, C. D., Lin, Y. S., Shireman, L. M., & Seixas, N. (2017). The use of metabolomics to identify biological signatures of manganese exposure. Annals of Work Exposures and Health, 61(4), 406–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker, M. G., Lin, Y. S., Simpson, C. D., Shireman, L. M., Nielsen, S. S., Racette, B. A., & Seixas, N. (2019). The reproducibility of urinary ions in manganese exposed workers. Journal of Trace Elements in Medicine and Biology, 51, 204–211.

    Article  CAS  PubMed  Google Scholar 

  • Beger, R. D., Dunn, W. B., Bandukwala, A., Bethan, B., Broadhurst, D., Clish, C. B., Dasari, S., Derr, L., Evans, A., & Fischer, S. (2019). Towards quality assurance and quality control in untargeted metabolomics studies. Metabolomics, 15(1), 1–5.

    Article  Google Scholar 

  • Biswas, S. K., Chatterjee, S., Bandyopadhyay, S., Kar, S., Som, N. K., Saha, S., & Chakraborty, S. (2021). Smartphone-enabled paper-based hemoglobin sensor for extreme point-of-care diagnostics. ACS Sensors, 6(3), 1077–1085.

    Article  CAS  PubMed  Google Scholar 

  • Bonvallot, N., David, A., Chalmel, F., Chevrier, C., Cordier, S., Cravedi, J.-P., & Zalko, D. (2018). Metabolomics as a powerful tool to decipher the biological effects of environmental contaminants in humans. Current Opinion in Toxicology, 8, 48–56.

    Article  Google Scholar 

  • Boschetto, P., Quintavalle, S., Miotto, D., Cascio, N. L., Zeni, E., & Mapp, C. E. (2006). Chronic obstructive pulmonary disease (COPD) and occupational exposures. Journal of Occupational Medicine and Toxicology, 1(1), 11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buchet, J., Leroyer, A., Nisse, C., Haguenoer, J., Mutti, A., Smerhovsky, Z., Cikrt, M., Trzcinka-Ochocka, M., Razniewska, G., & Jakubowski, M. (2006). Renal and neurologic effects of cadmium, lead, mercury, and arsenic in children: Evidence of early effects and multiple interactions at environmental exposure levels. Environmental Health Perspectives, 114(4), 584–590.

    Article  PubMed  Google Scholar 

  • Bundy, J. G., Davey, M. P., & Viant, M. R. (2009a). Environmental metabolomics: A critical review and future perspectives. Metabolomics, 5(1), 3–21.

    Article  CAS  Google Scholar 

  • Calderón-Santiago, M., López-Bascón, M. A., Peralbo-Molina, A., & Priego-Capote, F. (2017). MetaboQC: A tool for correcting untargeted metabolomics data with mass spectrometry detection using quality controls. Talanta, 174, 29–37.

    Article  PubMed  Google Scholar 

  • Campagna, M., Locci, E., Piras, R., Noto, A., Lecca, L. I., Pilia, I., Cocco, P., d’Aloja, E., & Scano, P. (2016). Metabolomic patterns associated to QTc interval in shiftworkers: An explorative analysis. Biomarkers, 21(7), 607–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cancer, I. A. f. R. o. (1997). Polychlorinated dibenzo-para-dioxins and polychlorinated dibenzofurans. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 69, 228–238.

  • Cappello, T., Maisano, M., Mauceri, A., & Fasulo, S. (2017). 1H NMR-based metabolomics investigation on the effects of petrochemical contamination in posterior adductor muscles of caged mussel Mytilus galloprovincialis. Ecotoxicology and Environmental Safety, 142, 417–422.

    Article  CAS  PubMed  Google Scholar 

  • Chen, F., Xue, J., Zhou, L., Wu, S., & Chen, Z. (2011). Identification of serum biomarkers of hepatocarcinoma through liquid chromatography/mass spectrometry-based metabonomic method. Analytical and Bioanalytical Chemistry, 401(6), 1899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, C.-H.S., Yuan, T.-H., Shie, R.-H., Wu, K.-Y., & Chan, C.-C. (2017). Linking sources to early effects by profiling urine metabolome of residents living near oil refineries and coal-fired power plants. Environment International, 102, 87–96.

    Article  CAS  PubMed  Google Scholar 

  • Craig, A., Cloarec, O., Holmes, E., Nicholson, J. K., & Lindon, J. C. (2006). Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Analytical Chemistry, 78(7), 2262–2267.

    Article  CAS  PubMed  Google Scholar 

  • Davoodi, S., Safdari, R., Ghazisaeidi, M., Mohammadzadeh, Z., & Azadmanjir, Z. (2015). Prevention and early detection of occupational cancers-a view of information technology solutions. Asian Pacific Journal of Cancer Prevention, 16(14), 5607–5611.

    Article  PubMed  Google Scholar 

  • De Meyer, T., Sinnaeve, D., Van Gasse, B., Rietzschel, E.-R., De Buyzere, M. L., Langlois, M. R., Bekaert, S., Martins, J. C., & Van Criekinge, W. (2010). Evaluation of standard and advanced preprocessing methods for the univariate analysis of blood serum 1 H-NMR spectra. Analytical and Bioanalytical Chemistry, 398(4), 1781–1790.

    Article  PubMed  Google Scholar 

  • Dehghani, F., Golbabaei, F., Omidi, F., & Zakerian, S. A. (2019). Investigation of the effect of unusual work shifts and sleep deprivation on cognitive performance in workers in the automotive industry. Iran Occupational Health, 16(3), 26–35.

    Google Scholar 

  • Dehghani, F., Omidi, F., Fallahzadeh, R. A., & Pourhassan, B. (2021a). Health risk assessment of occupational exposure to heavy metals in a steel casting unit of a steelmaking plant using Monte-Carlo simulation technique. Toxicology and Industrial Health, 37(7), 431–440.

    Article  CAS  PubMed  Google Scholar 

  • Dehghani, F., Omidi, F., Heravizadeh, O., & Yousefinejad, S. (2021b). Solidified floating organic droplet microextraction coupled with HPLC for rapid determination of trans, trans muconic acid in benzene biomonitoring. Scientific Reports, 11(1), 1–11.

    Article  Google Scholar 

  • Deng, P., Li, X., Petriello, M. C., Wang, C., Morris, A. J., & Hennig, B. (2019). Application of metabolomics to characterize environmental pollutant toxicity and disease risks. Reviews on Environmental Health, 34(3), 251–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dettmer, K., & Hammock, B. D. (2004). Metabolomics–a new exciting field within the" omics" sciences. Environmental Health Perspectives, 112(7), A396–A397.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deveau, M., Maier, A., & Krewski, D. (2017). Application of a framework for the selection of an appropriate occupational exposure limit for manganese. Neurotoxicology, 58, 249–256.

    Article  CAS  PubMed  Google Scholar 

  • Dudka, I., Kossowska, B., Senhadri, H., Latajka, R., Hajek, J., Andrzejak, R., Antonowicz-Juchniewicz, J., & Gancarz, R. (2014). Metabonomic analysis of serum of workers occupationally exposed to arsenic, cadmium and lead for biomarker research: A preliminary study. Environment International, 68, 71–81.

    Article  CAS  PubMed  Google Scholar 

  • Ellis, J. K., Athersuch, T. J., Cavill, R., Radford, R., Slattery, C., Jennings, P., McMorrow, T., Ryan, M. P., Ebbels, T. M. D., & Keun, H. C. (2011). Metabolic response to low-level toxicant exposure in a novel renal tubule epithelial cell system. Molecular BioSystems, 7(1), 247–257.

    Article  CAS  PubMed  Google Scholar 

  • Espín-Pérez, A., Krauskopf, J., de Kok, T. M., & Kleinjans, J. C. (2014). ‘OMICS-based’ biomarkers for environmental health studies. Current Environmental Health Reports, 1(4), 353–362.

    Article  Google Scholar 

  • Fenaille, F., Saint-Hilaire, P. B., Rousseau, K., & Junot, C. (2017). Data acquisition workflows in liquid chromatography coupled to high resolution mass spectrometry-based metabolomics: Where do we stand? Journal of Chromatography A, 1526, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Fiehn, O. (2002). Metabolomics—the link between genotypes and phenotypes (pp. 155–171). Springer.

    Google Scholar 

  • Fortes, C., Mastroeni, S., Pilla, M., Antonelli, G., Lunghini, L., & Aprea, C. (2013). The relation between dietary habits and urinary levels of 3-phenoxybenzoic acid, a pyrethroid metabolite. Food and Chemical Toxicology, 52, 91–96.

    Article  CAS  PubMed  Google Scholar 

  • Fostinelli, J., Madeo, E., Toraldo, E., Sarnico, M., Luzzana, G., Tomasi, C., & De Palma, G. (2018). Environmental and biological monitoring of occupational exposure to polynuclear aromatic hydrocarbons during highway pavement construction in Italy. Toxicology Letters, 298, 134–140.

    Article  CAS  PubMed  Google Scholar 

  • García-García, A. B., Lamichhane, S., Castejón, D., Cambero, M. I., & Bertram, H. C. (2018). 1H HR-MAS NMR-based metabolomics analysis for dry-fermented sausage characterization. Food Chemistry, 240, 514–523.

    Article  PubMed  Google Scholar 

  • Gidman, E., Goodacre, R., Emmett, B., Smith, A. R., & Gwynn-Jones, D. (2003). Investigating plant–plant interference by metabolic fingerprinting. Phytochemistry, 63(6), 705–710.

    Article  CAS  PubMed  Google Scholar 

  • Go, E. P. (2010). Database resources in metabolomics: An overview. Journal of Neuroimmune Pharmacology, 5(1), 18–30.

    Article  PubMed  Google Scholar 

  • Gorrochategui, E., Jaumot, J., Lacorte, S., & Tauler, R. (2016). Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: Overview and workflow. TrAC Trends in Analytical Chemistry, 82, 425–442.

    Article  CAS  Google Scholar 

  • Gowda, G. N., Zhang, S., Gu, H., Asiago, V., Shanaiah, N., & Raftery, D. (2008). Metabolomics-based methods for early disease diagnostics. Expert Review of Molecular Diagnostics, 8(5), 617–633.

    Article  CAS  PubMed  Google Scholar 

  • Griffin, J. L., & Shockcor, J. P. (2004). Metabolic profiles of cancer cells. Nature Reviews Cancer, 4(7), 551–561.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, W. J., Koal, T., Wang, Y., Kohl, M., Enot, D. P., & Deigner, H. P. (2010). Targeted metabolomics for biomarker discovery. Angewandte Chemie International Edition, 49(32), 5426–5445.

    Article  CAS  PubMed  Google Scholar 

  • Guardiola, J. J., Beier, J. I., Falkner, K. C., Wheeler, B., McClain, C. J., & Cave, M. (2016). Occupational exposures at a polyvinyl chloride production facility are associated with significant changes to the plasma metabolome. Toxicology and Applied Pharmacology, 313, 47–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guha, N., Loomis, D., Grosse, Y., Lauby-Secretan, B., El Ghissassi, F., Bouvard, V., Benbrahim-Tallaa, L., Baan, R., Mattock, H., & Straif, K. (2012). Carcinogenicity of trichloroethylene, tetrachloroethylene, some other chlorinated solvents, and their metabolites. Elsevier.

    Book  Google Scholar 

  • Hall, R., Beale, M., Fiehn, O., Hardy, N., Sumner, L., & Bino, R. (2002). Plant metabolomics: The missing link in functional genomics strategies. The Plant Cell. https://doi.org/10.1105/tpc.140720

    Article  PubMed  PubMed Central  Google Scholar 

  • Han, J., Danell, R. M., Patel, J. R., Gumerov, D. R., Scarlett, C. O., Speir, J. P., Parker, C. E., Rusyn, I., Zeisel, S., & Borchers, C. H. (2008). Towards high-throughput metabolomics using ultrahigh-field Fourier transform ion cyclotron resonance mass spectrometry. Metabolomics, 4(2), 128–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harezlak, J., Wu, M. C., Wang, M., Schwartzman, A., Christiani, D. C., & Lin, X. (2008). Biomarker discovery for arsenic exposure using functional data. Analysis and feature learning of mass spectrometry proteomic data. The Journal of Proteome Research, 7(1), 217–224.

    Article  CAS  PubMed  Google Scholar 

  • Hewelt-Belka, W., Garwolińska, D., Belka, M., Bączek, T., Namieśnik, J., & Kot-Wasik, A. (2019). A new dilution-enrichment sample preparation strategy for expanded metabolome monitoring of human breast milk that overcomes the simultaneous presence of low-and high-abundance lipid species. Food Chemistry, 288, 154–161.

    Article  CAS  PubMed  Google Scholar 

  • Holmes, E., Nicholls, A. W., Lindon, J. C., Connor, S. C., Connelly, J. C., Haselden, J. N., Damment, S. J., Spraul, M., Neidig, P., & Nicholson, J. K. (2000). Chemometric models for toxicity classification based on NMR spectra of biofluids. Chemical Research in Toxicology, 13(6), 471–478.

    Article  CAS  PubMed  Google Scholar 

  • Holmes, E., Loo, R. L., Stamler, J., Bictash, M., Yap, I. K., Chan, Q., Ebbels, T., De Iorio, M., Brown, I. J., & Veselkov, K. A. (2008). Human metabolic phenotype diversity and its association with diet and blood pressure. Nature, 453(7193), 396–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, H., Shine, J., & Wright, R. O. (2007). The challenge posed to children’s health by mixtures of toxic waste: The Tar Creek superfund site as a case-study. Pediatric Clinics of North America, 54(1), 155–175.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hulsegge, G., van Mechelen, W., Proper, K. I., Paagman, H., & Anema, J. R. (2020). Shift work, and burnout and distress among 7798 blue-collar workers. International Archives of Occupational and Environmental Health, 93, 955–963.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyötyläinen, T., & Orešič, M. (2014). Systems biology strategies to study lipidomes in health and disease. Progress in Lipid Research, 55, 43–60.

    Article  PubMed  Google Scholar 

  • Jakubowski, M., & Trzcinka-Ochocka, M. (2005). Biological monitoring of exposure: Trends and key developments. Journal of Occupational Health, 47(1), 22–48.

    Article  CAS  PubMed  Google Scholar 

  • Jeanneret, F., Boccard, J., Badoud, F., Sorg, O., Tonoli, D., Pelclova, D., Vlckova, S., Rutledge, D. N., Samer, C. F., & Hochstrasser, D. (2014). Human urinary biomarkers of dioxin exposure: Analysis by metabolomics and biologically driven data dimensionality reduction. Toxicology Letters, 230(2), 234–243.

    Article  CAS  PubMed  Google Scholar 

  • Johnson CH, Ivanisevic J, Siuzdak G. (2016). Metabolomics: beyond biomarkers and towards mechanisms. Nature reviews Molecular cell biology, 17(7), 451–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kågedal, K., Zhao, M., Svensson, I., & Brunk, U. T. (2001). Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochemical Journal, 359(2), 335–343.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kielhorn, J., Melber, C., Wahnschaffe, U., Aitio, A., & Mangelsdorf, I. (2000). Vinyl chloride: Still a cause for concern. Environmental Health Perspectives, 108(7), 579–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, K., Aronov, P., Zakharkin, S. O., Anderson, D., Perroud, B., Thompson, I. M., & Weiss, R. H. (2009). Urine metabolomics analysis for kidney cancer detection and biomarker discovery. Molecular & Cellular Proteomics, 8(3), 558–570.

    Article  CAS  Google Scholar 

  • Kim, K.-H., Jahan, S. A., Kabir, E., & Brown, R. J. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 60, 71–80.

    Article  CAS  PubMed  Google Scholar 

  • Klinke, H. B., Thomsen, A., & Ahring, B. K. (2004). Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology and Biotechnology, 66(1), 10–26.

    Article  CAS  PubMed  Google Scholar 

  • Kossowska, B., Dudka, I., Gancarz, R., & Antonowicz-Juchniewicz, J. (2013). Application of classic epidemiological studies and proteomics in research of occupational and environmental exposure to lead, cadmium and arsenic. International Journal of Hygiene and Environmental Health, 216(1), 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Kuhring, M., Eisenberger, A., Schmidt, V., Kränkel, N., Leistner, D. M., Kirwan, J., & Beule, D. (2020). Concepts and software package for efficient quality control in targeted metabolomics studies: MeTaQuaC. Analytical Chemistry, 92(15), 10241–10245.

    Article  CAS  PubMed  Google Scholar 

  • Kuo, C.-H., Wang, K.-C., Tian, T.-F., Tsai, M.-H., Chiung, Y.-M., Hsiech, C.-M., Tsai, S.-J., Wang, S.-Y., Tsai, D.-M., & Huang, C.-C. (2012). Metabolomic characterization of laborers exposed to welding fumes. Chemical Research in Toxicology, 25(3), 676–686.

    Article  PubMed  Google Scholar 

  • Ladeira, C., & Viegas, S. (2016). Human biomonitoring–an overview on biomarkers and their application in occupational and environmental health. Biomonitoring. https://doi.org/10.1515/bimo-2016-0003

    Article  Google Scholar 

  • Ladva, C. N., Golan, R., Greenwald, R., Yu, T., Sarnat, S. E., Flanders, W. D., Uppal, K., Walker, D. I., Tran, V., & Liang, D. (2017). Metabolomic profiles of plasma, exhaled breath condensate, and saliva are correlated with potential for air toxics detection. Journal of Breath Research, 12(1), 016008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laine, J. E., Bailey, K. A., Olshan, A. F., Smeester, L., Drobná, Z., Stýblo, M., Douillet, C., García-Vargas, G., Rubio-Andrade, M., & Pathmasiri, W. (2017). Neonatal metabolomic profiles related to prenatal arsenic exposure. Environmental Science & Technology, 51(1), 625–633.

    Article  CAS  Google Scholar 

  • Lake, A. D., Novak, P., Shipkova, P., Aranibar, N., Robertson, D., Reily, M. D., Lu, Z., Lehman-McKeeman, L. D., & Cherrington, N. J. (2013). Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease. Toxicology and Applied Pharmacology, 268(2), 132–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamichhane, S., Westerhuis, J. A., Ouwehand, A. C., Saarinen, M. T., Forssten, S. D., Jensen, H. M., Young, J. F., Bertram, H. C., & Yde, C. C. (2016). Gut microbial activity as influenced by fiber digestion: Dynamic metabolomics in an in vitro colon simulator. Metabolomics, 12(2), 25.

    Article  Google Scholar 

  • Lamichhane, S., Sundekilde, U. K., Blædel, T., Dalsgaard, T. K., Larsen, L. H., Dragsted, L. O., Astrup, A., & Bertram, H. C. (2017). Optimizing sampling strategies for NMR-based metabolomics of human feces: Pooled vs. unpooled analyses. Analytical Methods, 9(30), 4476–4480.

    Article  CAS  Google Scholar 

  • Lamichhane, S., Sen, P., Dickens, A. M., Hyötyläinen, T., & Orešič, M. (2018). An overview of metabolomics data analysis: Current tools and future perspectives. Comprehensive Analytical Chemistry, 82, 387–413.

    Article  CAS  Google Scholar 

  • Lan, Q., Zhang, L., Tang, X., Shen, M., Smith, M. T., Qiu, C., Ge, Y., Ji, Z., Xiong, J., & He, J. (2010). Occupational exposure to trichloroethylene is associated with a decline in lymphocyte subsets and soluble CD27 and CD30 markers. Carcinogenesis, 31(9), 1592–1596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, D.-W., Kim, H.-R., Myong, J.-P., Choi, J., Hong, Y.-C., & Kang, M.-Y. (2019). Does working long hours increase the risk of cardiovascular disease for everyone? Journal of Occupational Health, 61(6), 431–441.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenz, E., Weeks, J., Lindon, J., Osborn, D., & Nicholson, J. (2005). Qualitative high field 1 H-NMR spectroscopy for the characterization of endogenous metabolites in earthworms with biochemical biomarker potential. Metabolomics, 1(2), 123–136.

    Article  CAS  Google Scholar 

  • Li, T., & Chiang, J. Y. (2012). Bile acid signaling in liver metabolism and diseases. Journal of Lipids. https://doi.org/10.1155/2012/754067

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin, C. Y., Viant, M. R., & Tjeerdema, R. S. (2006). Metabolomics: Methodologies and applications in the environmental sciences. Journal of Pesticide Science, 31(3), 245–251.

    Article  CAS  Google Scholar 

  • Lindon, J. C., Nicholson, J. K., & Holmes, E. (2011). The handbook of metabonomics and metabolomics. Elsevier.

    Google Scholar 

  • Liu, K. H., Walker, D. I., Uppal, K., Tran, V., Rohrbeck, P., Mallon, T. M., & Jones, D. P. (2016). High-resolution metabolomics assessment of military personnel: Evaluating analytical strategies for chemical detection. Journal of Occupational and Environmental Medicine/american College of Occupational and Environmental Medicine, 58(8), S53.

    Article  CAS  PubMed Central  Google Scholar 

  • Liu, X., Zhou, L., Shi, X., & Xu, G. (2019). New advances in analytical methods for mass spectrometry-based large-scale metabolomics study. TrAC Trends in Analytical Chemistry, 121, 115665.

    Article  CAS  Google Scholar 

  • Lu, Y., Gao, K., Li, X., Tang, Z., Xiang, L., Zhao, H., Fu, J., Wang, L., Zhu, N., & Cai, Z. (2019). Mass spectrometry-based metabolomics reveals occupational exposure to per-and polyfluoroalkyl substances relates to oxidative stress, fatty acid β-oxidation disorder, and kidney injury in a manufactory in China. Environmental Science & Technology, 53(16), 9800–9809.

    Article  CAS  Google Scholar 

  • Luque-Garcia, J. L., Cabezas-Sanchez, P., & Camara, C. (2011). Proteomics as a tool for examining the toxicity of heavy metals. TrAC Trends in Analytical Chemistry, 30(5), 703–716.

    Article  CAS  Google Scholar 

  • Maher, A. D., Crockford, D., Toft, H., Malmodin, D., Faber, J. H., McCarthy, M. I., Barrett, A., Allen, M., Walker, M., & Holmes, E. (2008). Optimization of human plasma 1H NMR spectroscopic data processing for high-throughput metabolic phenotyping studies and detection of insulin resistance related to type 2 diabetes. Analytical Chemistry, 80(19), 7354–7362.

    Article  CAS  PubMed  Google Scholar 

  • Maniscalco, M., Paris, D., Melck, D., Chiariello, N., Di Napoli, F., Manno, M., Iavicoli, I., & Motta, A. (2018). Biomonitoring of workers using nuclear magnetic resonance-based metabolomics of exhaled breath condensate: A pilot study. Toxicology Letters, 298, 4–12.

    Article  CAS  PubMed  Google Scholar 

  • Manno, M., Viau, C., Cocker, J., Colosio, C., Lowry, L., Mutti, A., Nordberg, M., & Wang, S. (2010). Biomonitoring for occupational health risk assessment (BOHRA). Elsevier.

    Book  Google Scholar 

  • Misra, B. B. (2021). New software tools, databases, and resources in metabolomics: Updates from 2020. Metabolomics, 17(5), 1–24.

    Article  Google Scholar 

  • Mohandas, R., & Johnson, R. J. (2008). Uric acid levels increase risk for new-onset kidney disease. Journal of the American Society of Nephrology. https://doi.org/10.1681/ASN.2008091012

    Article  PubMed  Google Scholar 

  • Muñoz, B., & Albores, A. (2010). The role of molecular biology in the biomonitoring of human exposure to chemicals. International Journal of Molecular Sciences, 11(11), 4511–4525.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicholson, J. K., & Lindon, J. C. (2008). Metabonomics. Nature, 455(7216), 1054–1056.

    Article  CAS  PubMed  Google Scholar 

  • Ono, J., Hutson, D. G., Dombro, R. S., Levi, J. U., Livingstone, A., & Zeppa, R. (1978). Tryptophan and hepatic coma. Gastroenterology, 74(2), 196–200.

    Article  CAS  PubMed  Google Scholar 

  • Pałaszewska-Tkacz, A., Czerczak, S., Konieczko, K., & Kupczewska-Dobecka, M. (2019). Cytostatics as hazardous chemicals in healthcare workers’ environment. International Journal of Occupational Medicine and Environmental Health. https://doi.org/10.13075/ijomeh.1896.01248

    Article  PubMed  Google Scholar 

  • Pan, X., Yan, D., Wang, D., Wu, X., Zhao, W., Lu, Q., & Yan, H. (2017). Mitochondrion-mediated apoptosis induced by acrylamide is regulated by a balance between Nrf2 antioxidant and MAPK signaling pathways in PC12 cells. Molecular Neurobiology, 54(6), 4781–4794.

    Article  CAS  PubMed  Google Scholar 

  • Paraskevaidou, K., Porpodis, K., Kontakiotis, T., Kioumis, I., Spyratos, D., & Papakosta, D. (2019). Asthma and rhinitis in Greek furniture workers. Journal of Asthma, 58, 170–179.

    Article  Google Scholar 

  • Patejko, M., Jacyna, J., & Markuszewski, M. J. (2017). Sample preparation procedures utilized in microbial metabolomics: An overview. Journal of Chromatography B, 1043, 150–157.

    Article  CAS  Google Scholar 

  • Patti, G. J., Yanes, O., & Siuzdak, G. (2012). Metabolomics: The apogee of the omics trilogy. Nature Reviews Molecular Cell Biology, 13(4), 263–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patton, A. P., Zamore, W., Naumova, E. N., Levy, J. I., Brugge, D., & Durant, J. L. (2015). Transferability and generalizability of regression models of ultrafine particles in urban neighborhoods in the Boston area. Environmental Science & Technology, 49(10), 6051–6060.

    Article  CAS  Google Scholar 

  • Paustenbach, D., & Galbraith, D. (2006). Biomonitoring and biomarkers: Exposure assessment will never be the same. Environmental Health Perspectives, 114(8), 1143–1149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paustenbach, D. J., Cowan, D. M., & Sahmel, J. (2001). The history and biological basis of occupational exposure limits for chemical agents. In Patty’s industrial hygiene (pp. 865–955). Wiley.

    Google Scholar 

  • Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559–572.

    Article  Google Scholar 

  • Pennisi, M., Malaguarnera, G., Puglisi, V., Vinciguerra, L., Vacante, M., & Malaguarnera, M. (2013). Neurotoxicity of acrylamide in exposed workers. International Journal of Environmental Research and Public Health, 10(9), 3843–3854.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pezzatti, J., González-Ruiz, V., Codesido, S., Gagnebin, Y., Joshi, A., Guillarme, D., Schappler, J., Picard, D., Boccard, J., & Rudaz, S. (2019). A scoring approach for multi-platform acquisition in metabolomics. Journal of Chromatography A, 1592, 47–54.

    Article  CAS  PubMed  Google Scholar 

  • Phapale, P., Rai, V., Mohanty, A. K., & Srivastava, S. (2020). Untargeted metabolomics workshop report: Quality control considerations from sample preparation to data analysis. Journal of the American Society for Mass Spectrometry, 31(9), 2006–2010.

    Article  CAS  PubMed  Google Scholar 

  • Poole, C. D., Halcox, J. P., Jenkins-Jones, S., Carr, E. S., Schifflers, M. G., Ray, K. K., & Currie, C. J. (2013). Omega-3 fatty acids and mortality outcome in patients with and without type 2 diabetes after myocardial infarction: A retrospective, matched-cohort study. Clinical Therapeutics, 35(1), 40–51.

    Article  CAS  PubMed  Google Scholar 

  • Quinones, M. P., & Kaddurah-Daouk, R. (2009). Metabolomics tools for identifying biomarkers for neuropsychiatric diseases. Neurobiology of Disease, 35(2), 165–176.

    Article  CAS  PubMed  Google Scholar 

  • Raja, G., Jang, Y.-K., Suh, J.-S., Prabhakaran, V.-S., & Kim, T.-J. (2019). Advanced understanding of genetic risk and metabolite signatures in construction workers via cytogenetics and metabolomics analysis. Process Biochemistry, 86, 117–126.

    Article  CAS  Google Scholar 

  • Ramachandran, G., Ostraat, M., Evans, D. E., Methner, M. M., O’Shaughnessy, P., D’Arcy, J., Geraci, C. L., Stevenson, E., Maynard, A., & Rickabaugh, K. (2011). A strategy for assessing workplace exposures to nanomaterials. Journal of Occupational and Environmental Hygiene, 8(11), 673–685.

    Article  PubMed  Google Scholar 

  • Rauh, V., Whyatt, R., Garfinkel, R., Andrews, H., Hoepner, L., Reyes, A., Diaz, D., Camann, D., & Perera, F. (2004). Developmental effects of exposure to environmental tobacco smoke and material hardship among inner-city children. Neurotoxicology and Teratology, 26(3), 373–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochfort, S. (2005). Metabolomics reviewed: A new “omics” platform technology for systems biology and implications for natural products research. Journal of Natural Products, 68(12), 1813–1820.

    Article  CAS  PubMed  Google Scholar 

  • Roessner, U., & Bowne, J. (2009). What is metabolomics all about? BioTechniques, 46(5), 363–365.

    Article  CAS  PubMed  Google Scholar 

  • Roux, A., Lison, D., Junot, C., & Heilier, J.-F. (2011). Applications of liquid chromatography coupled to mass spectrometry-based metabolomics in clinical chemistry and toxicology: A review. Clinical Biochemistry, 44(1), 119–135.

    Article  CAS  PubMed  Google Scholar 

  • Saberi Hosnijeh, F., Pechlivanis, A., Keun, H. C., Portengen, L., Bueno-de-Mesquita, H. B., Heederik, D., & Vermeulen, R. (2013). Serum metabolomic pertubations among workers exposed to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD). Environmental and Molecular Mutagenesis, 54(7), 558–565.

    Article  CAS  PubMed  Google Scholar 

  • Saccenti, E., Hoefsloot, H. C., Smilde, A. K., Westerhuis, J. A., & Hendriks, M. M. (2014). Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics, 10(3), 361–374.

    Article  CAS  Google Scholar 

  • Schulte, P. A. (1991). Contribution of biological markers to occupational health. American Journal of Industrial Medicine, 20(4), 435–446.

    Article  CAS  PubMed  Google Scholar 

  • Silins, I., & Högberg, J. (2011). Combined toxic exposures and human health: Biomarkers of exposure and effect. International Journal of Environmental Research and Public Health, 8(3), 629–647.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smolinska, A., Blanchet, L., Buydens, L. M., & Wijmenga, S. S. (2012). NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review. Analytica Chimica Acta, 750, 82–97.

    Article  CAS  PubMed  Google Scholar 

  • Sonoda, H., Takase, H., Dohi, Y., & Kimura, G. (2011). Uric acid levels predict future development of chronic kidney disease. American Journal of Nephrology, 33(4), 352–357.

    Article  CAS  PubMed  Google Scholar 

  • Spratlin, J. L., Serkova, N. J., & Eckhardt, S. G. (2009). Clinical applications of metabolomics in oncology: A review. Clinical Cancer Research, 15(2), 431–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephenson, D., Seshadri, G., & Veranth, J. M. (2003). Workplace exposure to submicron particle mass and number concentrations from manual arc welding of carbon steel. AIHA Journal, 64(4), 516–521.

    Article  PubMed  Google Scholar 

  • Stettin, D., Poulin, R. X., & Pohnert, G. (2020). Metabolomics benefits from orbitrap GC–MS—comparison of low-and high-resolution GC–MS. Metabolites, 10(4), 143.

    Article  CAS  PubMed Central  Google Scholar 

  • Taheri, E., Yousefinejad, S., Dehghani, F., & Jafari, S. (2021). Inhalation health risk assessment of occupational exposure to cypermethrin in farmers. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2021.1900834

    Article  Google Scholar 

  • Taheri, E., Yousefinejad, S., & Dehghani, F. (2022). Investigation of some effective factors on urinary metabolites in biological monitoring of benzene, toluene, and xylene compounds. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2022.2097871

    Article  Google Scholar 

  • Tan, S., Begley, P., Mullard, G., Hollywood, K., & Bishop, P. (2016). Introduction to metabolomics and its applications in ophthalmology. Eye, 30(6), 773–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorne, P. S. (2008). Occupational toxicology. In C. D. Klaassen (Ed.), Casarett and Doull’s Toxicology: The basic science of poisons (7th ed., pp. 1273–1292). McGraw-Hill.

    Google Scholar 

  • Tranfo, G., Marchetti, E., Pigini, D., Miccheli, A., Spagnoli, M., Sciubba, F., Conta, G., Tomassini, A., & Fattorini, L. (2020). Targeted and untargeted metabolomics applied to occupational exposure to hyperbaric atmosphere. Toxicology Letters, 328, 28–34.

    Article  CAS  PubMed  Google Scholar 

  • Tsuji, M., Murota, S.-I., & Morita, I. (2003). Docosapentaenoic acid (22: 5, n-3) suppressed tube-forming activity in endothelial cells induced by vascular endothelial growth factor. Prostaglandins, Leukotrienes and Essential Fatty Acids, 68(5), 337–342.

    Article  CAS  Google Scholar 

  • Turkoglu, O., Zeb, A., Graham, S., Szyperski, T., Szender, J. B., Odunsi, K., & Bahado-Singh, R. (2016). Metabolomics of biomarker discovery in ovarian cancer: A systematic review of the current literature. Metabolomics, 12(4), 1–16.

    Article  CAS  Google Scholar 

  • Verma, D. K., Kurtz, L. A., Sahai, D., & Finkelstein, M. M. (2003). Current chemical exposures among Ontario construction workers. Applied Occupational and Environmental Hygiene, 18(12), 1031–1047.

    Article  CAS  PubMed  Google Scholar 

  • Vermeulen, R. (2017). The use of high-resolution metabolomics in occupational exposure and health research. Annals of Work Exposures and Health, 61(4), 395–397.

    Article  CAS  PubMed  Google Scholar 

  • Viau, C. (2002). Biological monitoring of exposure to mixtures. Toxicology Letters, 134(1–3), 9–16.

    Article  CAS  PubMed  Google Scholar 

  • Vineis, P., Khan, A. E., Vlaanderen, J., & Vermeulen, R. (2009). The impact of new research technologies on our understanding of environmental causes of disease: The concept of clinical vulnerability. Environmental Health, 8(1), 54.

    Article  PubMed  PubMed Central  Google Scholar 

  • von Schacky, C. (2013). Meta-analysing randomised controlled trials with omega-3 fatty acids in cardiovascular disease. BMJ Evidence-Based Medicine, 18(4), e33–e33.

    Article  Google Scholar 

  • Vuckovic, D. (2020). Sample preparation in global metabolomics of biological fluids and tissues (pp. 53–83). Elsevier.

    Google Scholar 

  • Walker, D. I., Pennell, K. D., Uppal, K., Xia, X., Hopke, P. K., Utell, M. J., Phipps, R. P., Sime, P. J., Rohrbeck, P., & Mallon, C. T. M. (2016a). Pilot metabolome-wide association study of benzo (a) pyrene in serum from military personnel. Journal of Occupational and Environmental Medicine, 58(8 Suppl 1), S44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker, D. I., Uppal, K., Zhang, L., Vermeulen, R., Smith, M., Hu, W., Purdue, M. P., Tang, X., Reiss, B., & Kim, S. (2016b). High-resolution metabolomics of occupational exposure to trichloroethylene. International Journal of Epidemiology, 45(5), 1517–1527.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, G., & Fowler, B. A. (2008). Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic. Toxicology and Applied Pharmacology, 233(1), 92–99.

    Article  CAS  PubMed  Google Scholar 

  • Wang, T. J., Larson, M. G., Vasan, R. S., Cheng, S., Rhee, E. P., McCabe, E., Lewis, G. D., Fox, C. S., Jacques, P. F., & Fernandez, C. (2011). Metabolite profiles and the risk of developing diabetes. Nature Medicine, 17(4), 448.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, S.-Y., Yu, C.-P., Pan, Y.-L., Zhou, X.-R., Xin, R., Wang, Y., Ma, W.-W., Gao, R., Wang, C., & Wu, Y.-H. (2017). Metabolomics analysis of serum from subjects after occupational exposure to acrylamide using UPLC-MS. Molecular and Cellular Endocrinology, 444, 67–75.

    Article  CAS  PubMed  Google Scholar 

  • Wang, R., Yin, Y., & Zhu, Z.-J. (2019). Advancing untargeted metabolomics using data-independent acquisition mass spectrometry technology. Analytical and Bioanalytical Chemistry, 411(19), 4349–4357.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S.-Y., Han, D., Pan, Y.-L., Yu, C.-P., Zhou, X.-R., Xin, R., Wang, R., Ma, W.-W., Wang, C., & Wu, Y.-H. (2020). A urinary metabolomic study from subjects after long-term occupational exposure to low concentration acrylamide using UPLC-QTOF/MS. Archives of Biochemistry and Biophysics, 681, 108279.

    Article  CAS  PubMed  Google Scholar 

  • Wang-Sattler, R., Yu, Z., Herder, C., Messias, A. C., Floegel, A., He, Y., Heim, K., Campillos, M., Holzapfel, C., & Thorand, B. (2012). Novel biomarkers for pre-diabetes identified by metabolomics. Molecular Systems Biology, 8(1), 615.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei, Y., Wang, Z., Chang, C. Y., Fan, T., Su, L., Chen, F., & Christiani, D. C. (2013). Global metabolomic profiling reveals an association of metal fume exposure and plasma unsaturated fatty acids. PLoS ONE, 8(10), e77413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart, D. S., Jewison, T., Guo, A. C., Wilson, M., Knox, C., Liu, Y., Djoumbou, Y., Mandal, R., Aziat, F., & Dong, E. (2012). HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Research, 41(D1), D801–D807.

    Article  PubMed  PubMed Central  Google Scholar 

  • Woo, H. M., Kim, K. M., Choi, M. H., Jung, B. H., Lee, J., Kong, G., Nam, S. J., Kim, S., Bai, S. W., & Chung, B. C. (2009). Mass spectrometry based metabolomic approaches in urinary biomarker study of women’s cancers. Clinica Chimica Acta, 400(1–2), 63–69.

    Article  CAS  Google Scholar 

  • Yousefinejad, S., & Hemmateenejad, B. (2015). Chemometrics tools in QSAR/QSPR studies: A historical perspective. Chemometrics and Intelligent Laboratory Systems, 149, 177–204.

    Article  CAS  Google Scholar 

  • Zhang, S., Zheng, C., Lanza, I. R., Nair, K. S., Raftery, D., & Vitek, O. (2009). Interdependence of signal processing and analysis of urine 1H NMR spectra for metabolic profiling. Analytical Chemistry, 81(15), 6080–6088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, A., Sun, H., Yan, G., Wang, P., & Wang, X. (2015). Metabolomics for biomarker discovery: Moving to the clinic. BioMed Research International. https://doi.org/10.1155/2015/354671

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by Shiraz University of Medical Sciences Grant (Grant No. 20829). The manuscript has been approved by the ethics committee of Shiraz University of Medical Sciences (Ethical ID: IR.SUMS.REC.1399.695).

Author information

Authors and Affiliations

Authors

Contributions

SY proposed the idea for the article, designed the work and revised the article. FD prepared the original draft of manuscript and screened the included articles. DIW prepared some sections, revised the manuscript and commented for improving the work. FO performed the literature search and data analysis. All the authors approved the final version of manuscript.

Corresponding author

Correspondence to Saeed Yousefinejad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghani, F., Yousefinejad, S., Walker, D.I. et al. Metabolomics for exposure assessment and toxicity effects of occupational pollutants: current status and future perspectives. Metabolomics 18, 73 (2022). https://doi.org/10.1007/s11306-022-01930-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-022-01930-7

Keywords

Navigation