Skip to main content
Log in

LC–MS untargeted approach showed that methyl jasmonate application on Vitis labrusca L. grapes increases phenolics at subtropical Brazilian regions

Metabolomics Aims and scope Submit manuscript

Cite this article

Abstract

Introduction

Vitis labrusca L. grapes are largely cultivated in Brazil, but the tropical climate negatively affects the phenols content, especially anthocyanin. According to the projections of the incoming climatic changes, the climate of several viticulture zone might change to tropical. Therefore, researches are focusing on increasing grape phenols content; with methyl jasmonate application (MeJa) is considered a good alternative.

Objectives

The aim was to investigate with an untargeted approach the metabolic changes caused by the MeJa pre-harvest application on two Vitis labrusca L. cultivars grapes, both of them grown in two Brazilian regions.

Methods

Isabel Precoce and Concord grapes cultivated under subtropical climate, in the south and southeast of Brazil, received MeJa pre-harvest treatment. Grape metabolome was extracted and analyzed with a MS based metabolomics protocol by UPLC-HRMS-QTOF.

Results

Unsupervised data analysis revealed a clear separation between the two regions and the two cultivars, while supervised data analysis revealed biomarkers between the MeJa treatment group and the control group. Among the metabolites positively affected by MeJa were (a) flavonoids with a high degree of methylation at the B-ring (malvidin and peonidin derivatives and isorhamentin) for Isabel Precoce grapes; (b) glucosides of hydroxycinnamates, gallocatechin, epigallocatechin and cis-piceid for Concord grapes; and (c) hydroxycinnamates esters with tartaric acid, and procyanidins for the Southeast region grapes.

Conclusion

These results suggest that MeJa can be used as elicitor to secondary metabolism in grapes grown even under subtropical climate, affecting phenolic biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift,22(6), 711–728.

    Article  Google Scholar 

  • Arapitsas, P., Speri, G., Angeli, A., Perenzoni, D., & Mattivi, F. (2014). The influence of storage on the “chemical age” of red wines. Metabolomics,10(5), 816–832. https://doi.org/10.1007/s11306-014-0638-x.

    Article  CAS  Google Scholar 

  • Arapitsas, P., Oliveira, J., & Mattivi, F. (2015). Do white grapes really exist? Food Research International,69, 21–25. https://doi.org/10.1016/j.foodres.2014.12.002.

    Article  CAS  Google Scholar 

  • Arapitsas, P., Corte, A. D., Gika, H., Narduzzi, L., Mattivi, F., & Theodoridis, G. (2016a). Studying the effect of storage conditions on the metabolite content of red wine using HILIC LC-MS based metabolomics. Food Chemistry,197, 1331–1340. https://doi.org/10.1016/j.foodchem.2015.09.084.

    Article  CAS  PubMed  Google Scholar 

  • Arapitsas, P., Ugliano, M., Perenzoni, D., Angeli, A., Pangrazzi, P., & Mattivi, F. (2016b). Wine metabolomics reveals new sulfonated products in bottled white wines, promoted by small amounts of oxygen. Journal of Chromatography A,1429, 155–165. https://doi.org/10.1016/j.chroma.2015.12.010.

    Article  CAS  PubMed  Google Scholar 

  • Arapitsas, P., Guella, G., & Mattivi, F. (2018). The impact of SO2 on wine flavanols and indoles in relation to wine style and age. Scientific Reports,8(1), 1–13. https://doi.org/10.1038/s41598-018-19185-5.

    Article  CAS  Google Scholar 

  • Bavaresco, L., Lucini, L., Busconi, M., Flamini, R., & de Rosso, M. (2016). Wine resveratrol: From the ground up. Nutrients,8(4), 222. https://doi.org/10.3390/nu8040222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., et al. (2018). MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Research, 46(W1), W486–W494. doi:10.1093/nar/gky310

    Article  CAS  Google Scholar 

  • Cox, E. D., & Cook, J. M. (1995). The Pictet-Spengler condensation: A new direction for an old reaction. Chemical Reviews,95(6), 1797–1842. https://doi.org/10.1021/cr00038a004.

    Article  CAS  Google Scholar 

  • da Silva, M. J. R., Paiva, A. P. M., Pimentel, A., Sánchez, C. A. P. C., Callili, D., Moura, M. F., et al. (2018). Yield performance of new juice grape varieties grafted onto different rootstocks under tropical conditions. Scientia Horticulturae,241(June), 194–200. https://doi.org/10.1016/j.scienta.2018.06.085.

    Article  CAS  Google Scholar 

  • Degu, A., Morcia, C., Tumino, G., Hochberg, U., Toubiana, D., Mattivi, F., et al. (2015). Plant physiology and biochemistry metabolite profiling elucidates communalities and differences in the polyphenol biosynthetic pathways of red and white Muscat genotypes. Plant Physiology et Biochemistry,86, 24–33. https://doi.org/10.1016/j.plaphy.2014.11.006.

    Article  CAS  Google Scholar 

  • Fachinello, J. C., Pasa, M. D. S., Schmtiz, J. D., & Betemps, D. L. (2011). Situation and perspectives of temperate fruit crops in Brazil. Revista Brasileira de Fruticultura,33, 109–120. https://doi.org/10.1590/S0100-29452011000500014.

    Article  Google Scholar 

  • Fan, L., Shi, J., Zuo, J., Gao, L., Lv, J., & Wang, Q. (2016). Methyl jasmonate delays postharvest ripening and senescence in the non-climacteric eggplant (Solanum melongena L.) fruit. Postharvest Biology and Technology,120, 76–83. https://doi.org/10.1016/j.postharvbio.2016.05.010.

    Article  CAS  Google Scholar 

  • Flamini, R., De Rosso, M., De Marchi, F., Dalla Vedova, A., Panighel, A., Gardiman, M., et al. (2013a). An innovative approach to grape metabolomics: Stilbene profiling by suspect screening analysis. Metabolomics,9(6), 1243–1253. https://doi.org/10.1007/s11306-013-0530-0.

    Article  CAS  Google Scholar 

  • Flamini, R., Mattivi, F., Rosso, M., Arapitsas, P., & Bavaresco, L. (2013b). Advanced knowledge of three important classes of grape phenolics: Anthocyanins, stilbenes and flavonols. International Journal of Molecular Sciences,14(10), 19651–19669. https://doi.org/10.3390/ijms141019651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franceschi, P., Mylonas, R., Shahaf, N., Scholz, M., Arapitsas, P., Masuero, D., et al. (2014). MetaDB a data processing workflow in untargeted MS-based metabolomics experiments. Frontiers in Bioengineering and Biotechnology,2(DEC), 1–12. https://doi.org/10.3389/fbioe.2014.00072.

    Article  Google Scholar 

  • Gerós, H., Chaves, M. M., Gil, H. M., & Delrot, S. (2016). Grapevine in a changing environment a molecular and ecophysiological perspective. In D. S. Geros, M. M. Chaves, H. M. Gil (Eds.), Chichester: Wiley.

  • Gómez-Plaza, E., Mestre-Ortuño, L., Ruiz-García, Y., Fernández-Fernández, J. I., & López-Roca, J. M. (2012). Effect of benzothiadiazole and methyl jasmonate on the volatile compound composition of Vitis vinifera L. Monastrell grapes and wines. American Journal of Enology and Viticulture. doi:10.5344/ajev.2012.12011

    Article  Google Scholar 

  • Haug, K., Salek, R. M., Conesa, P., Hastings, J., De Matos, P., Rijnbeek, M., et al. (2013). MetaboLights—An open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Research,41(D1), 781–786. https://doi.org/10.1093/nar/gks1004.

    Article  CAS  Google Scholar 

  • Herraiz, T. (1999). 1-Methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic Acid and 1,2,3,4-Tetrahydro-β-carboline-3-carboxylic acid in fruits. Journal of Agricultural and Food Chemistry,47(12), 4883–4887. https://doi.org/10.1021/jf990233d.

    Article  CAS  PubMed  Google Scholar 

  • Jardine, K., Karl, T., Lerdau, M., Harley, P., Guenther, A., & Mak, J. E. (2009). Carbon isotope analysis of acetaldehyde emitted from leaves following mechanical stress and anoxia. Plant Biology,11(4), 591–597. https://doi.org/10.1111/j.1438-8677.2008.00155.x.

    Article  CAS  PubMed  Google Scholar 

  • Ju, Y.-L., Liu, M., Zhao, H., Meng, J.-F., & Fang, Y.-L. (2016). Effect of exogenous abscisic acid and methyl jasmonate on anthocyanin composition, fatty acids, and volatile compounds of cabernet sauvignon (Vitis vinifera L.) grape berries. Molecules,21(10), 1354. https://doi.org/10.3390/molecules21101354.

    Article  CAS  PubMed Central  Google Scholar 

  • Keller, M. (2010). The science grapevines: of anatomy and physiology. ISBN: 978–0–12–374881–2.

  • Koyama, R., Roberto, S. R., de Souza, R. T., Borges, W. F. S., Anderson, M., Waterhouse, A. L., et al. (2018). Exogenous abscisic acid promotes anthocyanin biosynthesis and increased expression of flavonoid synthesis genes in vitis vinifera × vitis labrusca table grapes in a subtropical region. Frontiers in Plant Science,9(March), 1–12. https://doi.org/10.3389/fpls.2018.00323.

    Article  Google Scholar 

  • Mattivi, F., Guzzon, R., Vrhovsek, U., Stefanini, M., & Velasco, R. (2006). Metabolite profiling of grape: Flavonols and anthocyanins. Journal of Agricultural and Food Chemistry,54(20), 7692–7702. https://doi.org/10.1021/jf061538c.

    Article  CAS  PubMed  Google Scholar 

  • Moro, L., Hassimotto, N. M. A., & Purgatto, E. (2017). Postharvest auxin and methyl jasmonate effect on anthocyanin biosynthesis in red raspberry (Rubus idaeus L.). Journal of Plant Growth Regulation, 36(3), 773-782. doi:10.1007/s00344–017–9682-x

    Article  CAS  Google Scholar 

  • Narduzzi, L., Stanstrup, J., & Mattivi, F. (2015). Comparing wild american grapes with vitis vinifera: A metabolomics study of grape composition. Journal of Agricultural and Food Chemistry,63(30), 6823–6834. https://doi.org/10.1021/acs.jafc.5b01999.

    Article  CAS  PubMed  Google Scholar 

  • Narduzzi, L., Stanstrup, J., Mattivi, F., & Franceschi, P. (2018). The compound characteristics comparison (Ccc) approach: A tool for improving confidence in natural compound identification. Food Additives and Contaminants—A, 35(11), 2145–2157. doi:10.1080/19440049.2018.1523572

    Article  CAS  Google Scholar 

  • Palliotti, A., Tombesi, S., Silvestroni, O., Lanari, V., Gatti, M., & Poni, S. (2014). Changes in vineyard establishment and canopy management urged by earlier climate-related grape ripening: A review. Scientia Horticulturae,178, 43–54. https://doi.org/10.1016/j.scienta.2014.07.039.

    Article  Google Scholar 

  • Per, T. S., Khan, M. I. R., Anjum, N. A., Masood, A., Hussain, S. J., & Khan, N. A. (2018). Jasmonates in plants under abiotic stresses: Crosstalk with other phytohormones matters. Environmental and Experimental Botany,145(November 2017), 104–120. https://doi.org/10.1016/j.envexpbot.2017.11.004.

    Article  CAS  Google Scholar 

  • Portu, J., Santamaría, P., López-Alfaro, I., López, R., & Garde-Cerdán, T. (2015). Methyl jasmonate foliar application to tempranillo vineyard improved grape and wine phenolic content. Journal of Agricultural and Food Chemistry,63, 2328–2337. https://doi.org/10.1021/jf5060672.

    Article  CAS  PubMed  Google Scholar 

  • Portu, J., López, R., Baroja, E., Santamaría, P., & Garde-Cerdán, T. (2016). Improvement of grape and wine phenolic content by foliar application to grapevine of three different elicitors: Methyl jasmonate, chitosan, and yeast extract. Food Chemistry,201, 213–221. https://doi.org/10.1016/j.foodchem.2016.01.086.

    Article  CAS  PubMed  Google Scholar 

  • Portu, J., López, R., Ewald, P., Santamaría, P., Winterhalter, P., & Garde-Cerdán, T. (2018). Evaluation of Grenache, Graciano and Tempranillo grape stilbene content after field applications of elicitors and nitrogen compounds. Journal of the Science of Food and Agriculture,98(5), 1856–1862. https://doi.org/10.1002/jsfa.8662.

    Article  CAS  PubMed  Google Scholar 

  • Prince, S. F., Breen, P. J., Valladao, M., & Watson, B. T. (1995). Cluster sun exposure and quercetin in pinot noir grapes and wine. American Journal of Enology and Viticulture,46(2), 187–194.

    Google Scholar 

  • Ribéreau-Gayon P., Glories Y., Maujean A., Dubourdieu D. (2006). Handbook of enology, volume 2: The chemistry of wine stabilization and treatments, 2nd ed. Chichester: Wiley. ISBN-10: 0–470–01037–1.

    Book  Google Scholar 

  • Saavedra, G. M., Figueroa, N. E., Poblete, L. A., Cherian, S., & Figueroa, C. R. (2016). Effects of preharvest applications of methyl jasmonate and chitosan on postharvest decay, quality and chemical attributes of Fragaria chiloensis fruit. Food Chemistry,190, 448–453. https://doi.org/10.1016/j.foodchem.2015.05.107.

    Article  CAS  PubMed  Google Scholar 

  • Shahaf, N., Franceschi, P., Arapitsas, P., Rogachev, I., Vrhovsek, U., & Wehrens, R. (2013). Constructing a mass measurement error surface to improve automatic annotations in liquid chromatography/mass spectrometry based metabolomics. Rapid Communications in Mass Spectrometry,27(21), 2425–2431. https://doi.org/10.1002/rcm.6705.

    Article  CAS  PubMed  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Inititative (MSI). Metabolomics,3(3), 211–221. https://doi.org/10.1007/s11306-007-0082-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vezzulli, S., Civardi, S., Ferrari, F., & Bavaresco, L. (2007). Methyl jasmonate treatment as a trigger of resveratrol synthesis in cultivated grapevine. American Journal of Enology and Viticulture,4(58), 2–5.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the scholarship provided by Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior—CAPES and Fundação de Amparo a Pesquisa do Estado de São Paulo—FAPESP process number: 2016/08423–6; and 2017/20413–9. Food Research center FORC, Fundação de Amparo a Pesquisa do Estado de São Paulo—FAPESP process number: 2013/07914–8. PA and FM acknowledge the financial support from ADP 2018 funded by the Autonomous Province of Trento (Italy). We would like also to thank to Dr. Domenico Masuero for technical support.

Author information

Authors and Affiliations

Authors

Contributions

LM and PA designed, conducted the experiments, analyzed data and wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Laís Moro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

This article does not contain any studies with human and/or animal participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moro, L., Da Ros, A., da Mota, R.V. et al. LC–MS untargeted approach showed that methyl jasmonate application on Vitis labrusca L. grapes increases phenolics at subtropical Brazilian regions. Metabolomics 16, 18 (2020). https://doi.org/10.1007/s11306-020-1641-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-020-1641-z

Keywords

Navigation