Skip to main content

Advertisement

Log in

Serum metabolomics analysis reveals that weight loss in obese dogs results in a similar metabolic profile to dogs in ideal body condition

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

The study of metabolic profile can be an important tool to better understand, at a systemic level, metabolic alterations caused by different pathological conditions, such as obesity. Furthermore, it allows the discovery of metabolic biomarkers, which may help to diagnose alterations caused by obesity.

Objective

To investigate the metabolic profile of blood serum of obese dogs, control dogs, and dogs that were subjected to a weight loss program.

Methods

Ten obese adult spayed female dogs were included, and their body composition was determined by the deuterium isotope dilution method. The dogs were subjected to a weight loss program and formed a new experimental group after losing 20% of the initial body weight. A third experimental group was composed of ten lean adult spayed female dogs. The metabolic profile of blood serum was evaluated through nuclear magnetic resonance (NMR). Principal Component Analyses (PCA) and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) models were constructed using Pareto scaling pre-processing. Pathway analysis was also performed using the MetaboAnalist online tool.

Results

The PCA shows that the control and after weight loss groups presented a trend to negative PC1, indicating similarities between these two groups. In contrast, obese animals presented a tendency to appear on negative PC2 indicating a different metabolic profile. The OPLS-DA analysis of the serum indicated that healthy groups presented higher content of glucose, while animals that lost weight had higher levels of cholesterol and lactate than the control group. On the other hand, the analysis showed that lipid content, cholesterol, and branched-chain amino acids were highest in obese animals. Variable Influence on Projection (VIP) analysis demonstrated that Lactate is the most important metabolite for the OPLS-DA model and Hierarchical Cluster Analysis (HCA) corroborated the similarity between the control group and the obese after weight loss groups. Moreover, the pathway analysis indicated the most important metabolic pathways related to this dataset.

Conclusions

The metabolomic assessment based on NMR of blood serum differed between obese dogs and animals in optimal body condition. Moreover, the weight loss resulted in metabolic profiles similar to those observed in lean animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • AOAC - Association of Official Analysis Chemists. (2006). Official Methods of Analysis of AOAC International. Association of Official Analysis Chemists International (17th ed.). Arlington, VA, USA: Association of Official Analysis Chemists International.

    Google Scholar 

  • Aguilar-Valles, A., Inoue, W., Rummel, C., & Luheshi, G. N. (2015). Obesity, adipokines and neuroinflammation. Neuropharmacology, 96, 124–134.

    Article  CAS  PubMed  Google Scholar 

  • Bach, J. F., Rozanski, E. A., Bedenice, D., Chan, D. L., Freeman, L. M., Lofgren, J. L., et al. (2007). Association of expiratory airway dysfunction with marked obesity in healthy adult dogs. American Journal of Veterinary Research, 68(6), 670–675.

    Article  PubMed  Google Scholar 

  • Bailhache, E., Nguyen, P., Krempf, M., Siliart, B., Magot, T., & Ouguerram, K. (2003). Lipoproteins abnormalities in obese insulin-resistant dogs. Metabolism, 52(5), 559–564.

    Article  CAS  PubMed  Google Scholar 

  • Barbul, A. (1995). The use of arginine in clinical practice. In L. A. Cynober (Ed.), Amino acid metabolism and therapy in health and nutritional disease (pp. 361–372). New York: CRC Press.

    Google Scholar 

  • Beckonert, O., Keun, H. C., Ebbels, T. M., Bundy, J., Holmes, E., Lindon, J. C., et al. (2007). Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature Protocols, 2(11), 2692.

    Article  CAS  PubMed  Google Scholar 

  • Bifari, F., & Nisoli, E. (2017). Branched-chain amino acids differently modulate catabolic and anabolic states in mammals: A pharmacological point of view. British Journal of Pharmacology, 174(11), 1366–1377.

    Article  CAS  PubMed  Google Scholar 

  • Brunetto, M. A., Nogueira, S., Sá, F. C., Peixoto, M., Vasconcellos, R. S., Ferraudo, A. J., et al. (2011a). Correspondência entre obesidade e hiperlipidemia em cães. Ciência Rural, 41(2), 266–271.

    Article  CAS  Google Scholar 

  • Brunetto, M. A., Sá, F. C., Nogueira, S. P., Gomes, M. D., Pinarel, A. G., Jeremias, J. T., et al. (2011b). The intravenous glucose tolerance and postprandial glucose tests may present different responses in the evaluation of obese dogs. British Journal of Nutrition, 106(S1), 194–197.

    Article  CAS  Google Scholar 

  • Carlos, G., Santos, F. P., & Fröehlich, P. E. (2020). Canine metabolomics advances. Metabolomics, 16, 16.

    Article  CAS  PubMed  Google Scholar 

  • Chikamune, T., Katamoto, H., Ohashi, F., & Shimada, Y. (1995). Serum lipid and lipoprotein concentrations in obese dogs. Journal of Veterinary Medical Science, 57(4), 595–598.

    Article  CAS  Google Scholar 

  • Chondronikola, M., Magkos, F., Yoshino, J., Okunade, A. L., Patterson, B. W., Muehlbauer, M. J., et al. (2018). Effect of progressive weight loss on lactate metabolism: A randomized controlled trial. Obesity, 26(4), 683–688.

    Article  CAS  PubMed  Google Scholar 

  • de Godoy, M. R., & Swanson, K. S. (2013). Companion animals symposium: Nutrigenomics: Using gene expression and molecular biology data to understand pet obesity. Journal of Animal Science., 91(6), 2949–2964.

    Article  PubMed  Google Scholar 

  • Fain, J. N., Madan, A. K., Hiler, M. L., Cheema, P., & Bahouth, S. W. (2004). Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology, 145(5), 2273–2282.

    Article  CAS  PubMed  Google Scholar 

  • FEDIAF - European Pet Food Industry Federation. (2018). Nutritional guidelines for complete and complementary pet food for cats and dogs. Fédération Européenne de l’Industrie des Aliments pour Animaux Familiers.

  • Ferrier, L., Robert, P., Dumon, H., Martin, L., & Nguyen, P. (2002). Evaluation of body composition in dogs by isotopic dilution using a low-cost technique. Fourier-transform infrared spectroscopy. Journal of Nutrition, 132(6), 1725–1777.

    Article  Google Scholar 

  • Forster, G. M., Stockman, J., Noyes, N., Heuberger, A. L., Broeckling, C. D., Bantle, C. M., et al. (2018). A comparative study of sérum biochemistry, metabolome and microbiome parameters of clinically healthy, normal weight, overweight, and obese companion dogs. Topics in Companion Animal Medicine, 33(4), 126–135.

    Article  PubMed  Google Scholar 

  • German, A. J. (2006a). Clinical risks associated with obesity in companion animals. Waltham Focus, 16(1), 21–26.

    Google Scholar 

  • German, A. J. (2006b). The growing problem of obesity in dogs and cats. Journal of Nutrition, 136, 1940–1946.

    Article  Google Scholar 

  • Giesbertz, P., & Daniel, H. (2016). Branched-chain amino acids as biomarkers in diabetes. Current Opinion in Clinical Nutrition & Metabolic Care, 19(1), 48–54.

    Article  CAS  Google Scholar 

  • Goodacre, R., Vaidyanathan, S., Dunn, W. B., Harrigan, G. G., & Kell, D. B. (2004). Metabolomics by numbers: Acquiring and understanding global metabolite data. Trends in Biotechnology, 22(5), 245–252.

    Article  CAS  PubMed  Google Scholar 

  • Goossens, G. H., Bizzarri, A., Venteclef, N., Essers, Y., Cleutjens, J. P., Konings, E., et al. (2011). Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation, 124(1), 67–76.

    Article  CAS  PubMed  Google Scholar 

  • Grant, R. W., Vester Boler, B. M., Ridge, T. K., Graves, T. K., & Swanson, K. S. (2011). Adipose tissue transcriptome changes during obesity development in female dogs. Physiological Genomics, 43(6), 295–307.

    Article  CAS  PubMed  Google Scholar 

  • Grauer, G. F. (2010). Urolitíase canina. In R. W. Nelson & C. G. Couto (Eds.), Medicina Interna de Pequenos Animais (pp. 670–679). Rio de Janeiro: Elsevier.

    Google Scholar 

  • Hegarty, B. D., Cooney, G. J., Kraegen, E. W., & Furler, S. M. (2002). Increased efficiency of fatty acid uptake contributes to lipid accumulation in skeletal muscle of high fat-fed insulin-resistant rats. Diabetes, 51(5), 1477–1484.

    Article  CAS  PubMed  Google Scholar 

  • Hiscock, N., Petersen, E. W., Krzywkowski, K., Boza, J., Halkjaer-Kristensen, J., & Pedersen, B. K. (2003). Glutamine supplementation further enhances exercise-induced plasma IL-6. Journal of Applied Physiology, 95(1), 145–148.

    Article  CAS  PubMed  Google Scholar 

  • Hodson, L., Humphreys, S. M., Karpe, F., & Frayn, K. N. (2013). Metabolic signatures of human adipose tissue hypoxia in obesity. Diabetes, 62(5), 1417–1425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoenig, M., Wilkins, C., Holson, J. C., & Ferguson, D. C. (2003). Effects of obesity on lipid profiles in neutered male and female cats. American Journal of Veterinary Research, 64(3), 299–303.

    Article  CAS  PubMed  Google Scholar 

  • Karimpour, M., Surowiec, I., Wu, J., Gouveia-Figueira, S., Pinto, R., Trygg, J., et al. (2016). Postprandial metabolomics: A pilot mass spectrometry and NMR study of the human plasma metabolome in response to a challenge meal. Analytica Chimica Acta, 908, 121–131.

    Article  CAS  PubMed  Google Scholar 

  • Kealy, R. D., Lawler, D. F., Ballam, J. M., Mantz, S. L., Biery, D. N., Greeley, E. H., et al. (2010). Effects of diet restriction on life span and age-related changes in dogs. Journal of the American Veterinary Medical Association, 220(9), 1315–1320.

    Article  Google Scholar 

  • Kiens, B., Roemen, T. H., & Van der Vusse, G. J. (1999). Muscular long-chain fatty acid content during graded exercise in humans. American Journal of Physiology-Endocrinology and Metabolism, 276(2), 352–357.

    Article  Google Scholar 

  • La Mura, V., Pasarín, M., Rodriguez-Vilarrupla, A., García-Pagán, J. C., Bosch, J., & Abraldes, J. G. (2014). Liver sinusoidal endothelial dysfunction after LPS administration: A role for inducible-nitric oxide synthase. Journal of Hepatology, 61(6), 1321–1327.

    Article  PubMed  CAS  Google Scholar 

  • Laflamme, D. P. (2012). Companion Animals Symposium: Obesity in dogs and cats: What is wrong with being fat? Journal of Animal Science, 90, 1653–1662.

    Article  CAS  PubMed  Google Scholar 

  • Laflamme, D. R. (1997). Development and validation of a body condition score system for dogs: A clinical tool. Canine Practice, 22, 10–15.

    Google Scholar 

  • Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 412(6846), 565–566.

    Article  CAS  Google Scholar 

  • Lekcharoensuk, C., Lulich, J. P., Osborne, C. A., Pusoonthornthum, R., Allen, T. A., Koehler, L. A., et al. (2000). Patient and environmental factors associated with calcium oxalate urolithiasis in dogs. Journal of the American Veterinary Medical Association, 217(4), 515–519.

    Article  CAS  PubMed  Google Scholar 

  • Lindblad-Toh, K., Wade, C. M., Mikkelsen, T. S., Karlsson, E. K., Jaffe, D. B., Kamal, M., et al. (2005). Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature, 438(7069), 803–819.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, C. J., & Adams, S. H. (2014). Branched-chain amino acids in metabolic signalling and insulin resistance. Nature Reviews Endocrinology, 10(12), 723–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao, J., Xia, Z., Chen, J., & Yu, J. (2013). Prevalence and risk factors for canine obesity surveyed in veterinary practices in Beijing, China. Preventive Veterinary Medicine, 112(3–4), 438–442.

    Article  PubMed  Google Scholar 

  • Michel, K. E., Anderson, W., Cupp, C., & Laflamme, D. P. (2011). Correlation of a feline muscle mass score with body composition determined by dual-energy X-ray absorptiometry. British Journal of Nutrition, 106(S1), 57–59.

    Article  CAS  Google Scholar 

  • Nagana Gowda, G. A., & Raftery, D. (2017). Recent advances in NMR-based metabolomics. Analytical Chemistry, 89(1), 490–510.

    Article  CAS  PubMed  Google Scholar 

  • Nagana Gowda, G. A., & Raftery, D. (2015). Can NMR solve some significant challenges in metabolomics? Journal of Magnetic Resonance, 260, 144–160.

    Article  CAS  PubMed  Google Scholar 

  • Newgard, C. B. (2017). Metabolomics and metabolic diseases: Where do we stand? Cell Metabolism, 25(1), 43–56.

    Article  CAS  PubMed  Google Scholar 

  • Newgard, C. B., An, J., Bain, J. R., Muehlbauer, M. J., Stevens, R. D., Lien, L. F., et al. (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism, 9(4), 311–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NRC - National Research Council. (2006). Nutrient requirements of dogs and cats. National Academies Press.

  • O’Kell, A. L., Garrett, T. J., & Atkinson, C. W. M. A. (2019). Untargeted metabolomic analysis in non-fasted diabetic dogs by UHPLC – HRMS. Metabolomics, 15(15), 1–6.

    Google Scholar 

  • O’Kell, A. L., Garrett, T. J., Wasserfall, C., & Atkinson, M. A. (2017). Untargeted metabolomic analysis in naturally occurring canine diabetes mellitus identifies similarities to human Type 1 Diabetes. Scientific Reports, 7(1), 1–7.

    Article  CAS  Google Scholar 

  • Peeters, A., Barendregt, J. J., Willekens, F., Mackenbach, J. P., Al Mamun, A., & Bonneux, L. (2003). Obesity in adulthood and its consequences for life expectancy: A life-table analysis. Annals of Internal Medicine, 138(1), 24–32.

    Article  PubMed  Google Scholar 

  • Pereira-Neto, G. B., Brunetto, M. A., Champion, T., Ortiz, E. M., Carciofi, A. C., & Camacho, A. A. (2014). Avaliação da pressão arterial sistêmica em cães obesos: comparação entre os métodos oscilométrico e doppler ultrassônico. Pesquisa Veterinária Brasileira, 34, 87–91.

    Article  Google Scholar 

  • Pereira-Neto, G. B., Brunetto, M. A., Oba, P. M., Champion, T., Villaverde, C., Vendramini, T. H. A., et al. (2018). Weight loss improves arterial blood gases and respiratory parameters in obese dogs. Journal of Animal Physiology and Animal Nutrition, 102(6), 1743–1748.

    Article  CAS  PubMed  Google Scholar 

  • Porsani, M. Y. H., Teixeira, F. A., Oliveira, V. V., Pedrinelli, V., Dias, R. A., German, A. J. & Brunetto, M. A. (2020) Prevalence of canine obesity in the city of São Paulo, Brazil. Scientific Reports, (in press).

  • Randle, P. J., Garland, P. B., Hales, C. N., & Newsholme, E. A. (1963). The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet I, 1, 785–789.

    Article  CAS  Google Scholar 

  • Söder, J., Hagman, R., Dicksved, J., Lindåse, S., Malmlöf, K., Agback, P., et al. (2017). The urine metabolome differs between lean and overweight Labrador Retriever dogs during a feed-challenge. PLoS ONE, 12(6), e0180086.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Söder, J., Höglund, K., Dicksved, J., Hagman, R., Röhnisch, H. E., Moazzami, A. A., et al. (2019). Plasma metabolomics reveals lower carnitine concentrations in overweight Labrador Retriever dogs. Acta Veterinaria Scandinavica, 61(1), 10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Trayhurn, P. (2013). Hypoxia and adipose tissue function and dysfunction in obesity. Physiological Reviews, 93(1), 1–21.

    Article  CAS  PubMed  Google Scholar 

  • Usui, S., Yasuda, H., & Koketsu, Y. (2016). Characteristics of obese or overweight dogs visiting private Japanese veterinary clinics. Asian Pacific Journal of Tropical Biomedicine, 6, 338–343.

    Article  Google Scholar 

  • Vieira, V. J., & Valentine, R. J. (2009). Mitochondrial biogenesis in adipose tissue: Can exercise make fat cells ‘fit’? The Journal of Physiology, 587(14), 3427–3428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO. (2017). World Health Organization. Obesity and overweight. http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

  • Vendramini, T. H. A., Macedo, H. T., Amaral, A. R., Rentas, M. F., Macegoza, M. V., Zafalon, R. V. A., et al. (2020). Gene expression of immunoinflammatory response and immunological status of obese dogs before and after weight loss. PLoS ONE, 15(8), e0238638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al. (2001). The Sequence of the Human Genome. Science, 291(5507), 1304–1351.

    Article  CAS  PubMed  Google Scholar 

  • Xie, B., Waters, M. J., & Schirra, H. J. (2012). Investigating potential mechanisms of obesity by metabolomics. BioMed Research International, 2012, 805683.

    Google Scholar 

  • Ye, J. (2009). Emerging role of adipose tissue hypoxia in obesity and insulin resistance. International Journal of Obesity, 33(1), 54–66.

    Article  CAS  PubMed  Google Scholar 

  • Ye, J., Gao, Z., Yin, J., & He, Q. (2007). Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. American Journal of Physiology-Endocrinology and Metabolism, 293(4), 1118–1128.

    Article  CAS  Google Scholar 

  • Yoon, M. S. (2016). The emerging role of branched-chain amino acids in insulin resistance and metabolism. Nutrients, 8(7), 405.

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang, A., Sun, H., & Wang, X. (2013). Power of metabolomics in biomarker discovery and mining mechanisms of obesity. Obesity Reviews, 14(4), 344–349.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to FAPESP (process 2018/00504-2) for a fellowship awarded to the F.M.M.O. and the Grandfood team for their support of this study.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

The study design was performed by MAB, CFFP, JTJ, and THAV. All authors participated in the manuscript writing and review process. Laboratory analyses were performed by FMMO, LAC, EF, HTM, MVM, VP, and RVAZ. The statistical analyses were performed by FMMO and LAC.

Corresponding author

Correspondence to Marcio A. Brunetto.

Ethics declarations

Conflict of interest

All authors declare that they do not have any conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 706 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vendramini, T.H.A., Macedo, H.T., Zafalon, R.V.A. et al. Serum metabolomics analysis reveals that weight loss in obese dogs results in a similar metabolic profile to dogs in ideal body condition. Metabolomics 17, 27 (2021). https://doi.org/10.1007/s11306-020-01753-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-020-01753-4

Navigation