Skip to main content

Advertisement

Log in

Software tools, databases and resources in metabolomics: updates from 2018 to 2019

  • Review Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Metabolomics has evolved as a discipline from a discovery and functional genomics tool, and is now a cornerstone in the era of big data-driven precision medicine. Sample preparation strategies and analytical technologies have seen enormous growth, and keeping pace with data analytics is challenging, to say the least. This review introduces and briefly presents around 100 metabolomics software resources, tools, databases, and other utilities that have surfaced or have improved in 2019. Table 1 provides the computational dependencies of the tools, categorizes the resources based on utility and ease of use, and provides hyperlinks to webpages where the tools can be downloaded or used. This review intends to keep the community of metabolomics researchers up to date with all the software tools, resources, and databases developed in 2019, in one place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CE:

Capillary electrophoresis

DB:

Database

GC:

Gas chromatography

GUI:

Graphical user interface

HRMS:

High-resolution mass spectrometry

HR MS/MS:

High-resolution tandem mass spectrometry

Q-ToF:

Hybrid quadrupole orthogonal time-of-flight

IMS:

Ion-mobility mass spectrometry

KEGG:

Kyoto encyclopedia of genes and genomes

LC:

Liquid chromatography

MSI:

Mass spectrometry imaging

MS:

Mass spectrometry

m/z :

Mass-to-charge

NMR:

Nuclear magnetic resonance

QC:

Quality control

R:

R-statistical programming

MS/MS:

Tandem mass spectrometry

UPLC-TOF:

Ultra performance liquid chromatography time-of-flight mass spectrometry

References

  • Alka, O., Sachsenberg, T., Bichmann, L., Pfeuffer, J., Weisser, H., Wein, S., et al. (2019). OpenMS for open source analysis of mass spectrometric data. Peer-reviewed Journal,7, e2776627761.

    Google Scholar 

  • Alkhalifah, Y., Phillips, I., Soltoggio, A., Darnley, K., Nailon, W. H., McLaren, D., et al. (2019). VOCCluster: Untargeted metabolomics feature clustering approach for clinical breath gas chromatography–mass spectrometry data. Analytical Chemistry,92(4), 2937–2945.

    Article  CAS  Google Scholar 

  • Baquer, G., Semente, L., Garcia-Altares, M., Lee, Y. J., Chaurand, P., Correig, X., et al. (2019). rMSIcleanup: An open-source tool for matrix-related peak annotation in mass spectrometry imaging and its application to silver-assisted laser desorption/ionization. bioRxiv.. https://doi.org/10.1101/2019.12.20.884957.

    Article  Google Scholar 

  • Beauxis, Y., & Genta-Jouve, G. (2018). MetWork: A web server for natural products anticipation. Bioinformatics,35(10), 1795–1796.

    Article  CAS  Google Scholar 

  • Behsaz, B., Mohimani, H., Gurevich, A., Prjibelski, A., Fisher, M., Vargas, F., et al. (2019). De novo peptide sequencing reveals many cyclopeptides in the human gut and other environments. Cell Systems. https://doi.org/10.1016/j.cels.2019.11.007.

    Article  PubMed  Google Scholar 

  • Bittremieux, W. (2019). spectrum_utils: A Python package for mass spectrometry data processing and visualization. bioRxiv.. https://doi.org/10.1101/725036.

    Article  Google Scholar 

  • Blaženović, I., Kind, T., Sa, M. R., Ji, J., Vaniya, A., Wancewicz, B., et al. (2019). Structure annotation of all mass spectra in untargeted metabolomics. Analytical Chemistry,91(3), 2155–2162.

    Article  CAS  PubMed  Google Scholar 

  • Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S. Y., et al. (2019). antiSMASH 5.0: Updates to the secondary metabolite genome mining pipeline. Nucleic Acids Research.,47(W1), W81–W87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borgsmüller, N., Gloaguen, Y., Opialla, T., Blanc, E., Sicard, E., Royer, A.-L., et al. (2019). WiPP: Workflow for improved peak picking for gas chromatography–mass spectrometry (GC–MS) data. bioRxiv.. https://doi.org/10.1101/837260.

    Article  Google Scholar 

  • Canzler, S., Hackermüller, J., & Schor, J. (2019). MOD-Finder: Identify multi-omics data sets related to defined chemical exposure. arXiv preprint.

  • Cao, L., Clish, C., Hu, F. B., Martinez-Gonzalez, M. A., Razquin, C., Bullo-Bonet, M., et al. (2019a). genuMet: Distinguish genuine untargeted metabolic features without quality control samples. bioRxiv, 837260.

  • Cao, L., Gurevich, A., Alexander, K. L., Naman, C. B., Leao, T., Glukhov, E., et al. (2019b). MetaMiner: A scalable peptidogenomics approach for discovery of ribosomal peptide natural products with blind modifications from microbial communities. Cell Systems,9(6), 600. https://doi.org/10.1016/j.cels.2019.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso, S., Afonso, T., Maraschin, M., & Rocha, M. (2019). WebSpecmine: A website for metabolomics data analysis and mining. Metabolites. https://doi.org/10.3390/metabo9100237.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., et al. (2018). MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Research,46(W1), W486–W494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clair, G., Reehl, S., Stratton, K. G., Monroe, M. E., Tfaily, M. M., Ansong, C., et al. (2019). Lipid Mini-On: Mining and ontology tool for enrichment analysis of lipidomic data. Bioinformatics,35(21), 4507–4508.

    Article  PubMed  PubMed Central  Google Scholar 

  • Codesido, S., Randazzo, G. M., Lehmann, F., González-Ruiz, V., García, A., Xenarios, I., et al. (2019). DynaStI: A dynamic retention time database for steroidomics. Metabolites,9(5), 85.

    Article  CAS  PubMed Central  Google Scholar 

  • Considine, E. C., & Salek, R. M. (2019). A tool to encourage minimum reporting guideline uptake for data analysis in metabolomics. Metabolites. https://doi.org/10.3390/metabo9030043.

    Article  PubMed  PubMed Central  Google Scholar 

  • del Castillo, E., Semente, L., Torres, S., Rafols, P., Ramirez, N., Martins-Green, M., et al. (2019). rMSIKeyIon: An ion filtering r package for untargeted analysis of metabolomic LDI-MS images. Metabolites,9(8), 162.

    Article  CAS  PubMed Central  Google Scholar 

  • Denecker, T., Durand, W., Maupetit, J., Hébert, C., Camadro, J.-M., Poulain, P., et al. (2019). Pixel: a content management platform for quantitative omics data. PeerJ.. https://doi.org/10.7717/peerj.6623.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dennis, K. K., Uppal, K., Liu, K. H., Ma, C., Liang, B., Go, Y.-M., et al. (2019). Phytochelatin database: A resource for phytochelatin complexes of nutritional and environmental metals. Database. https://doi.org/10.1093/database/baz083.

    Article  PubMed  PubMed Central  Google Scholar 

  • Djoumbou-Feunang, Y., Pon, A., Karu, N., Zheng, J., Li, C., Arndt, D., et al. (2019). CFM-ID 3.0: Significantly improved ESI–MS/MS prediction and compound identification. Metabolites,9(4), 72.

    Article  CAS  PubMed Central  Google Scholar 

  • Domingo-Almenara, X., Montenegro-Burke, J. R., Guijas, C., Majumder, E. L.-W., Benton, H. P., & Siuzdak, G. (2019). Autonomous METLIN-guided in-source fragment annotation for untargeted metabolomics. Analytical Chemistry,91(5), 3246–3253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, Y., Feldberg, L., & Aharoni, A. (2019). Miso: an R package for multiple isotope labeling assisted metabolomics data analysis. Bioinformatics,35(18), 3524–3526.

    Article  PubMed  Google Scholar 

  • Du, D., Tan, L., Wang, Y., Peng, B., Weinstein, J. N., Wondisford, F. E., et al. (2019). ElemCor: Accurate data analysis and enrichment calculation for high-resolution LC–MS stable isotope labeling experiments. BMC Bioinformatics,20(1), 89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dührkop, K., Fleischauer, M., Ludwig, M., Aksenov, A. A., Melnik, A. V., Meusel, M., et al. (2019). SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nature Methods,16(4), 299.

    Article  CAS  PubMed  Google Scholar 

  • Ernst, M., Kang, K. B., Caraballo-Rodríguez, A. M., Nothias, L.-F., Wandy, J., Chen, C., et al. (2019). MolNetEnhancer: Enhanced molecular networks by integrating metabolome mining and annotation tools. Metabolites,9(7), 144.

    Article  CAS  PubMed Central  Google Scholar 

  • Flores-Gonzalez, M., Hosmani, P. S., Fernandez-Pozo, N., Mann, M., Humann, J. L., Main, D., et al. (2019). Citrusgreening.org: An open access and integrated systems biology portal for the Huanglongbing (HLB) disease complex. bioRxiv.. https://doi.org/10.1101/868364.

    Article  Google Scholar 

  • Foroutan, A., Guo, A. C., Vazquez-Fresno, R., Lipfert, M., Zhang, L., Zheng, J., et al. (2019). Chemical composition of commercial cow’s milk. Journal of Agricultural Food Chemistry.,67(17), 4897–4914.

    Article  CAS  PubMed  Google Scholar 

  • Gavard, R., Palacio Lozano, D. C., Guzman, A., Rossell, D., Spencer, S. E., & Barrow, M. P. (2019). Rhapso: Automatic stitching of mass segments from Fourier transform ion cyclotron resonance mass spectra. Analytical Chemistry.,91(23), 15130–15137.

    Article  CAS  PubMed  Google Scholar 

  • Gui, S., Yang, L., Li, J., Luo, J., Xu, X., Yuan, J., et al. (2020). ZEAMAP, a comprehensive database adapted to the maize multi-omics era. bioRxiv.. https://doi.org/10.1101/2020.01.04.894626.

    Article  Google Scholar 

  • Guo, W., Archer, J., Moore, M., Bruce, J., McLain, M., Shojaee, S., et al. (2019). QUICK: Quality and usability investigation and control kit for mass spectrometric data from detection of persistent organic pollutants. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph16214203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hao, L., Zhu, Y. R., Wei, P. L., Johnson, J., Buchberger, A., Frost, D., et al. (2019). Metandem: An online software tool for mass spectrometry-based isobaric labeling metabolomics. Analytica Chimica Acta,1088, 99–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henry, V. J., Bandrowski, A. E., Pepin, A. S., Gonzalez, B. J., & Desfeux, A. (2014). OMICtools: An informative directory for multi-omic data analysis. Database (Oxford). https://doi.org/10.1093/database/bau069.

    Article  Google Scholar 

  • Hoffmann, N., Hartler, J., & Ahrends, R. (2019a). jmzTab-M: A reference parser, writer, and validator for the proteomics standards initiative mzTab 20 metabolomics standard. Analytical Chemistry,91(20), 12615–12618.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann, N., Rein, J., Sachsenberg, T. T., Hartler, J., Haug, K., Mayer, G., et al. (2019b). mzTab-M: A data standard for sharing quantitative results in mass spectrometry metabolomics. Analytical Chemistry.,91(5), 3302–3310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua, D., Patabandige, M. W., Go, E. P., & Desaire, H. (2019). The aristotle classifier: Using the whole glycomic profile to indicate a disease state. Analytical Chemistry,91(17), 11070–11077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang, I., Lee, J. U., Lee, J. M., Kim, B. H., Moon, B., Hong, J., et al. (2019). LC–MS/MS software for screening unknown erectile dysfunction drugs and analogues: Artificial neural network classification, peak-count scoring, simple similarity search, and hybrid similarity search algorithms. Analytical Chemistry,91(14), 9119–9128. https://doi.org/10.1021/acs.analchem.9b01643.

    Article  CAS  PubMed  Google Scholar 

  • Ji, H., Xu, Y., Lu, H., & Zhang, Z. (2019). Deep MS/MS-aided structural-similarity scoring for unknown metabolites identification. Analytical Chemistry.,91(9), 5629–5637.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, W. X., Qiu, Y. P., Ni, Y., Su, M. M., Jia, W., & Du, X. X. (2010). An Automated data analysis pipeline for GC–TOF-MS metabonomics studies. Journal of Proteome Research,9(11), 5974–5981. https://doi.org/10.1021/pr1007703.

    Article  CAS  PubMed  Google Scholar 

  • Joesten, W. C., & Kennedy, M. A. (2019). RANCM: A new ranking scheme for assigning confidence levels to metabolite assignments in NMR-based metabolomics studies. Metabolomics,15(1), 5.

    Article  CAS  PubMed  Google Scholar 

  • Kachman, M., Habra, H., Duren, W., Wigginton, J., Sajjakulnukit, P., Michailidis, G., et al. (2019). Deep annotation of untargeted LC–MS metabolomics data with Binner. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz798.

    Article  PubMed Central  Google Scholar 

  • Kim, S., Thiessen, P. A., Cheng, T., Zhang, J., Gindulyte, A., & Bolton, E. E. (2019). PUG-View: Programmatic access to chemical annotations integrated in PubChem. Journal of Cheminformatics,11(1), 56. https://doi.org/10.1186/s13321-019-0375-2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirwan, J. A., Kaddurah-Daouk, R., Mitchell, T., Pischon, T., Schmidt, M. A., & Velagapudi, V. (2019). Biobanking for metabolomics and lipidomics in precision medicine. Clinical Chemistry,65(7), 827–832.

    Article  CAS  PubMed  Google Scholar 

  • Kiweler, M., Looso, M., & Graumann, J. (2019). MARMoSET—Extracting publication-ready mass spectrometry metadata from RAW files. Molecular and Cellular Proteomics,18(8), 1700–1702. https://doi.org/10.1074/mcp.TIR119.001505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh, H. W. L., Fermin, D., Vogel, C., Choi, K. P., Ewing, R. M., & Choi, H. (2019). iOmicsPASS: Network-based integration of multiomics data for predictive subnetwork discovery. NPJ Systems Biology and Applications,5, 22. https://doi.org/10.1038/s41540-019-0099-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koster, J. (2016). Rust-Bio: A fast and safe bioinformatics library. Bioinformatics,32(3), 444–446. https://doi.org/10.1093/bioinformatics/btv573.

    Article  CAS  PubMed  Google Scholar 

  • Le Boulch, M., Déhais, P., Combes, S., & Pascal, G. (2019). The MACADAM database: A MetAboliC pAthways DAtabase for Microbial taxonomic groups for mining potential metabolic capacities of archaeal and bacterial taxonomic groups. Database. https://doi.org/10.1093/database/baz049.

    Article  PubMed  PubMed Central  Google Scholar 

  • Léon, A., Cariou, R., Hutinet, S., Hurel, J., Guitton, Y., Tixier, C. L., et al. (2019). HaloSeeker 1.0: A user-friendly software to highlight halogenated chemicals in nontargeted high-resolution mass spectrometry data sets. Analytical Chemistry,91(5), 3500–3507.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Zuo, Y., Xu, C., Varghese, R. S., & Ressom, H. W. INDEED: R package for network based differential expression analysis. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2018 (pp. 2709–2712): IEEE

  • Liu, Z., Portero, E. P., Jian, Y., Zhao, Y., Onjiko, R. M., Zeng, C., et al. (2019). Trace, machine learning of signal images for trace-sensitive mass spectrometry: A case study from single-cell metabolomics. Analytical Chemistry,91(9), 5768–5776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López, M. F., Gil-de-la-Fuente, A., Godzien, J., Rupérez, F. J., Barbas, C., & Otero, A. (2019). LAS: A lipid annotation service capable of explaining the annotations it generates. Computational Structural Biotechnology Journal,17, 1113–1122.

    Article  CAS  Google Scholar 

  • Lucas, A. M., Palmiero, N. E., McGuigan, J., Passero, K., Zhou, J. Y., Orie, D., et al. (2019). CLARITE facilitates the quality control and analysis process for EWAS of metabolic-related traits. Frontiers in Genetics. https://doi.org/10.3389/fgene.2019.01240.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ludwig, M., Nothias, L.-F., Dührkop, K., Koester, I., Fleischauer, M., Hoffmann, M. A., et al. (2019). ZODIAC: Database-independent molecular formula annotation using Gibbs sampling reveals unknown small molecules. bioRxiv.. https://doi.org/10.1101/842740.

    Article  Google Scholar 

  • Mallick, H., Franzosa, E. A., Mclver, L. J., Banerjee, S., Sirota-Madi, A., Kostic, A. D., et al. (2019). Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences. Nature Communications,10(1), 3136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangul, S., Martin, L. S., Eskin, E., & Blekhman, R. (2019). Improving the usability and archival stability of bioinformatics software. BMC Genome Biology. https://doi.org/10.1186/s13059-019-1649-8.

    Article  Google Scholar 

  • McLean, C., & Kujawinski, E. B. (2019). AutoTuner: High fidelity, robust, and rapid parameter selection for metabolomics data processing. bioRxiv. https://doi.org/10.1101/812370.

    Article  Google Scholar 

  • Melnikov, A. D., Tsentalovich, Y. P., & Yanshole, V. V. (2020). Deep learning for the precise peak detection in high-resolution LC–MS data. Analytical Chemistry,92(1), 588–592. https://doi.org/10.1021/acs.analchem.9b04811.

    Article  CAS  PubMed  Google Scholar 

  • Mendez, K. M., Pritchard, L., Reinke, S. N., & Broadhurst, D. I. (2019). Toward collaborative open data science in metabolomics using Jupyter Notebooks and cloud computing. Metabolomics,15(10), 125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millard, P., Delépine, B., Guionnet, M., Heuillet, M., Bellvert, F., & Létisse, F. (2019). IsoCor: Isotope correction for high-resolution MS labeling experiments. Bioinformatics,35(21), 4484–4487.

    Article  PubMed  Google Scholar 

  • Misra, B. B., & Mohapatra, S. J. E. (2018). Tools and resources for metabolomics research community: A 2017–2018 update. Electrophoresis,40(2), 227–246.

    Article  CAS  PubMed  Google Scholar 

  • Misra, B. B., & van der Hooft, J. J. (2016). Updates in metabolomics tools and resources: 2014–2015. Electrophoresis,37(1), 86–110. https://doi.org/10.1002/elps.201500417.

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Munoz, J. C., Selem-Mojica, N., Mullowney, M. W., Kautsar, S. A., Tryon, J. H., Parkinson, E. I., et al. (2020). A computational framework to explore large-scale biosynthetic diversity. Nature Chemical Biology,16(1), 60–68. https://doi.org/10.1038/s41589-019-0400-9.

    Article  CAS  PubMed  Google Scholar 

  • Neveu, V., Nicolas, G., Salek, R. M., Wishart, D. S., & Scalbert, A. (2019). Exposome-Explorer 2.0: An update incorporating candidate dietary biomarkers and dietary associations with cancer risk. Nucleic Acids Research.,48(D1), D908–D912.

    PubMed Central  Google Scholar 

  • Nguyen, D. H., Nguyen, C. H., & Mamitsuka, H. (2019). ADAPTIVE: leArning DAta-dePendenT, concIse molecular VEctors for fast, accurate metabolite identification from tandem mass spectra. Bioinformatics,35(14), i164–i172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni, Y., Yu, G., Chen, H., Deng, Y., Wells, P. M., Steves, C. J., et al. (2019). M2IA: A web server for microbiome and metabolome integrative analysis. bioRxiv. https://doi.org/10.1101/678813.

    Article  Google Scholar 

  • Nothias, L. F., Petras, D., Schmid, R., Dührkop, K., Rainer, J., Sarvepalli, A., et al. (2019). Feature-based molecular networking in the GNPS analysis environment. bioRxiv.. https://doi.org/10.1101/812404.

    Article  Google Scholar 

  • Novikova, D., Cherenkov, P., Tkachev, K., Levitsky, V., & Mironova, V. MetaRE: Search for cis-regulatory elements via meta-analysis of transcriptomic data. In Proceedings of theBioinformatics of Genome Regulation and Structure\Systems Biology (BGRS\SB-2018), 2018 (pp. 179–179)

  • O'Shea, K. T., Kattupalli, D., Mur, L., Hardy, N., Misra, B. B., & Lu, C. (2018). DIMEdb: An integrated database and web service for metabolite identification in direct infusion mass spectrometery. biorRxiv.. https://doi.org/10.1101/291799.

    Article  Google Scholar 

  • Ou, J., & Zhu, L. J. (2019). trackViewer: A bioconductor package for interactive and integrative visualization of multi-omics data. Nature Methods,16(6), 453–454. https://doi.org/10.1038/s41592-019-0430-y.

    Article  CAS  PubMed  Google Scholar 

  • Paley, S., & Karp, P. D. (2019). The MultiOmics Explainer: Explaining omics results in the context of a pathway/genome database. BMC Bioinformatics,20(1), 399. https://doi.org/10.1186/s12859-019-2971-6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peris-Díaz, M. D., Sweeney, S. R., Rodak, O., Sentandreu, E., & Tiziani, S. (2019). R-MetaboList 2: A flexible tool for metabolite annotation from high-resolution data-independent acquisition mass spectrometry analysis. Metabolites,9(9), 187.

    Article  CAS  PubMed Central  Google Scholar 

  • Picart-Armada, S., Fernandez-Albert, F., Vinaixa, M., Yanes, O., & Perera-Lluna, A. (2018). FELLA: An R package to enrich metabolomics data. BMC Bioinformatics,19(1), 53.

    Article  CAS  Google Scholar 

  • Pu, J., Yu, Y., Liu, Y., Tian, L., Gui, S., Zhong, X., et al. (2019). MENDA: A comprehensive curated resource of metabolic characterization in depression. Briefings in Bioinformatics. https://doi.org/10.1093/bib/bbz055.

    Article  PubMed Central  Google Scholar 

  • Ramautar, R., Somsen, G. W., & de Jong, G. J. (2019). CE-MS for metabolomics: Developments and applications in the period 2016–2018. Electrophoresis,40(1), 165–179.

    Article  CAS  PubMed  Google Scholar 

  • Rinschen, M. M., Ivanisevic, J., Giera, M., & Siuzdak, G. (2019). Identification of bioactive metabolites using activity metabolomics. Nature Reviews Molecular Cell Biology,20(6), 353–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roumani, A. M., Madkour, A., Ouzzani, M., McGrew, T., Omran, E., & Zhang, X. (2019). BioNetApp: An interactive visual data analysis platform for molecular expressions. PLoS ONE,14(2), e0211277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rusconi, F. (2019). mineXpert: Biological mass spectrometry data visualization and mining with full JavaScript ability. Journal of Proteome Research,18(5), 2254–2259. https://doi.org/10.1021/acs.jproteome.9b00099.

    Article  CAS  PubMed  Google Scholar 

  • Rusilowicz, M. J., Dickinson, M., Charlton, A. J., O’Keefe, S., & Wilson, J. (2018). MetaboClust: Using interactive time-series cluster analysis to relate metabolomic data with perturbed pathways. PLoS ONE,13(10), e0205968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuhmann, K., Moon, H., Thomas, H., Ackerman, J. M., Groessl, M., Wagner, N., et al. (2019). Quantitative fragmentation model for bottom-up shotgun lipidomics. Analytical Chemistry,91(18), 12085–12093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultheis, H., Kuenne, C., Preussner, J., Wiegandt, R., Fust, A., Bentsen, M., et al. (2019). WIlsON: Web-based Interactive Omics VisualizatioN. Bioinformatics,35(6), 1055–1057. https://doi.org/10.1093/bioinformatics/bty711.

    Article  CAS  PubMed  Google Scholar 

  • Shen, X., Wang, R., Xiong, X., Yin, Y., Cai, Y., Ma, Z., et al. (2019). Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics. Nature Communications,10(1), 1516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, X., Xiong, X., Wang, R., Yin, Y., Cai, Y., Ma, Z., et al. (2018). Metabolic reaction network-based recursive metabolite identification for untargeted metabolomics. bioRxiv.. https://doi.org/10.1101/305201.

    Article  Google Scholar 

  • Shen, X., & Zhu, Z. J. (2019). MetFlow: An interactive and integrated workflow for metabolomics data cleaning and differential metabolite discovery. Bioinformatics,35(16), 2870–2872. https://doi.org/10.1093/bioinformatics/bty1066.

    Article  CAS  PubMed  Google Scholar 

  • Singh, U., Hur, M., Dorman, K., & Wurtele, E. (2019). MetaOmGraph: A workbench for interactive exploratory data analysis of large expression datasets. bioRxiv.. https://doi.org/10.1101/698969.

    Article  Google Scholar 

  • Sorokina, M., & Steinbeck, C. (2019). NaPLeS: A natural products likeness scorer-web application and database. Journal of Cheminformatics,11(1), 55. https://doi.org/10.1186/s13321-019-0378-z.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spicer, R., Salek, R. M., Moreno, P., Canueto, D., & Steinbeck, C. (2017a). Navigating freely-available software tools for metabolomics analysis. Metabolomics,13(9), 106. https://doi.org/10.1007/s11306-017-1242-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spicer, R. A., Salek, R., & Steinbeck, C. (2017b). Comment: A decade after the metabolomics standards initiative it's time for a revision. Scientific Data,4, 170138.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanstrup, J., Broeckling, C. D., Helmus, R., Hoffmann, N., Mathe, E., Naake, T., et al. (2019). The metaRbolomics toolbox in bioconductor and beyond. Metabolites. https://doi.org/10.3390/metabo9100200.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics,3(3), 211–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tada, I., Tsugawa, H., Meister, I., Zhang, P., Shu, R., Katsumi, R., et al. (2019). Creating a reliable mass spectral-retention time library for all ion fragmentation-based metabolomics. Metabolites,9(11), 251.

    Article  CAS  PubMed Central  Google Scholar 

  • Tiffany, C. R., & Baumler, A. J. (2019). omu, a Metabolomics count data analysis tool for intuitive figures and convenient metadata collection. Microbiology Resource Announcements. https://doi.org/10.1128/MRA.00129-19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tortorella, S., Tiberi, P., Bowman, A. P., Claes, B. S., Ščupáková, K. R., Heeren, R. M., et al. (2019). LipostarMSI: Comprehensive, vendor-neutral software for visualization, data analysis, and automated molecular identification in mass spectrometry imaging. Journal of the American Society for Mass Spectrometry.,31(1), 155–163.

    Article  CAS  PubMed  Google Scholar 

  • Ulfenborg, B. (2019). Vertical and horizontal integration of multi-omics data with miodin. bioRxiv.. https://doi.org/10.1101/431429.

    Article  Google Scholar 

  • Vignoli, A., Ghini, V., Meoni, G., Licari, C., Takis, P. G., Tenori, L., et al. (2019). High-throughput metabolomics by 1D NMR. Angewandte Chemie International Edition,58(4), 968–994.

    Article  CAS  PubMed  Google Scholar 

  • Wajid, B., Iqbal, H., Jamil, M., Rafique, H., & Anwar, F. (2019). MetumpX—A metabolomics support package for untargeted mass spectrometry. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz765.

    Article  Google Scholar 

  • Wandy, J., Davies, V., Weidt, S., Daly, R., & Rogers, S. (2019). In silico optimization of mass spectrometry fragmentation strategies in metabolomics. Metabolites. https://doi.org/10.3390/metabo9100219.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, C., Zhang, B., Timari, I., Somogyi, A., Li, D.-W., Adcox, H. E., et al. (2019a). Accurate and efficient determination of unknown metabolites in metabolomics by NMR-based molecular motif identification. Analytical Chemistry.,91(24), 15686–15693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Xing, X., Chen, L., Yang, L., Su, X., Rabitz, H., et al. (2018). Peak annotation and verification engine for untargeted LC–MS metabolomics. Analytical Chemistry,91(3), 1838–1846.

    Article  CAS  Google Scholar 

  • Wang, M., Jarmusch, A. K., Vargas, F., Aksenov, A. A., Gauglitz, J., Weldon, K., et al. (2019b). MASST: A web-based basic mass spectrometry search tool for molecules to search public data. bioRxiv.. https://doi.org/10.1101/591016.

    Article  Google Scholar 

  • Wang, S. S., & Yang, H. (2019). pseudoQC: A regression-based simulation software for correction and normalization of complex metabolomics and proteomics datasets. Proteomics. https://doi.org/10.1002/pmic.201900264.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weatherly, D. B., Arpinar, F. S., Porterfield, M., Tiemeyer, M., York, W. S., & Ranzinger, R. (2019). GRITS Toolbox—A freely available software for processing, annotating and archiving glycomics mass spectrometry data. Glycobiology,29(6), 452–460. https://doi.org/10.1093/glycob/cwz023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart, D. S., Li, C., Marcu, A., Badran, H., Pon, A., Budinski, Z., et al. (2019). PathBank: A comprehensive pathway database for model organisms. Nucleic Acids Research. https://doi.org/10.1093/nar/gkz861.

    Article  PubMed Central  Google Scholar 

  • Wist, J. (2019). HastaLaVista, a web-based user interface for NMR-based untargeted metabolic profiling analysis in biomedical sciences: towards a new publication standard. Journal of Cheminformatics,11(1), 1–10.

    Article  Google Scholar 

  • Wolthuis, J. C., Magnusdottir, S., Pras-Raves, M., Jans, J. J., Burgering, B. M., van Mil, S., et al. (2019). MetaboShiny-interactive processing, analysis and identification of untargeted metabolomics data. bioRxiv. https://doi.org/10.1101/734236.

    Article  Google Scholar 

  • Wu, H.-Y., Nöllenburg, M., Sousa, F. L., & Viola, I. (2019). Metabopolis: Scalable network layout for biological pathway diagrams in urban map style. BMC Bioinformatics,20(1), 187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, R., Chen, X., & Ochoa, I. (2019). MassComp, a lossless compressor for mass spectrometry data. BMC Bioinformatics,20(1), 368. https://doi.org/10.1186/s12859-019-2962-7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao, C. H., Wang, L., Stancliffe, E., Sindelar, M., Cho, K., Yin, W., et al. (2020). Dose-response metabolomics to understand biochemical mechanisms and off-target drug effects with the TOXcms software. Analytical Chemistry,92(2), 1856–1864. https://doi.org/10.1021/acs.analchem.9b03811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, Y., Wang, R., Cai, Y., Wang, Z., & Zhu, Z. J. (2019). DecoMetDIA: Deconvolution of multiplexed MS/MS spectra for metabolite identification in SWATH-MS-based untargeted metabolomics. Analytical Chemistry,91(18), 11897–11904. https://doi.org/10.1021/acs.analchem.9b02655.

    Article  CAS  PubMed  Google Scholar 

  • Yu, M., & Petrick, L. (2019). Reactomics: Using mass spectrometry as a chemical reaction detector. bioRxiv. https://doi.org/10.1101/855148.

    Article  Google Scholar 

  • Zeng, X., Zhang, P., Wang, Y., Qin, C., Chen, S., He, W., et al. (2018). CMAUP: A database of collective molecular activities of useful plants. Nucleic Acids Research,47(D1), D1118–D1127.

    Article  PubMed Central  Google Scholar 

  • Zhang, C., Arif, M., Li, X., Lee, S., Tebani, A., Zhou, W., et al. (2019a). MOBN: An interactive database of multi-omics biological networks. bioRxiv. https://doi.org/10.1101/662502.

    Article  Google Scholar 

  • Zhang, Y.-Y., Zhang, Q., Zhang, Y.-M., Wang, W.-W., Zhang, L., Yu, Y.-J., et al. (2019b). A comprehensive automatic data analysis strategy for gas chromatography–mass spectrometry based untargeted metabolomics. Journal of Chromatography A. https://doi.org/10.1016/j.chroma.2019.460787.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, B., Bryant, L., Wilde, M., Cordell, R., Salman, D., Ruszkiewicz, D., et al. (2019). LabPipe: An extensible informatics platform to streamline management of metabolomics data and metadata. arXiv preprint.

Download references

Acknowledgements

We acknowledge the extensive efforts of the informatics and computational resource developers who help drive the field forward with their codes, packages, tools, and resources and enable biologists and analytical chemists to keep pace with the volume and complexity of the metabolomics data generated. We apologize to those developers and creators whose tools and resources have been missed in this review, either inadvertently or due to space limitations.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

BBM conceived and designed the review manuscript. Both KOS and BBM conducted literature search of the tools, KOS prepared the figure, BBM prepared the tables, and both KOS and BBM wrote the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Biswapriya B. Misra.

Ethics declarations

Conflict of interest

The authors KOS and BBM declare no conflict of interest.

Ethical approval

This article does not contain any studies with human and/or animal participants.

Research involving human and/or animal participants

This article does not contain any studies with human and/or animal participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Shea, K., Misra, B.B. Software tools, databases and resources in metabolomics: updates from 2018 to 2019. Metabolomics 16, 36 (2020). https://doi.org/10.1007/s11306-020-01657-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-020-01657-3

Keywords

Navigation