Skip to main content
Log in

Metabolites profiling of date palm (Phoenix dactylifera L.) commercial by-products (pits and pollen) in relation to its antioxidant effect: a multiplex approach of MS and NMR metabolomics

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Phoenix dactylifera L. (date palm) is one of the most valued crops worldwide for its economical and nutraceutical applications of its date fruit (pericarp). Currently date pits, considered as a waste product, is employed as coffee substitute post roasting. Whereas, pollen represents another valuable by-product used as a dietary supplement.

Objectives

In this study, a large-scale comparative metabolomics approach was performed for the first characterization and standardization of date palm by-products viz., date pits and pollen. Moreover, roasting impact on date pit metabolite composition was also assessed.

Methods

Metabolites profiling of pits and pollen was determined via a multiplex approach of UPLC–MS and NMR, coupled to multivariate analysis, in relation to its antioxidant activities.

Results

Chemical analyses led to the identification of 67 metabolites viz., phenolic acids, flavonols, fatty acids, sphingolipids, steroids and saponins of which 10 are first time to be reported. The enrichment of steroids in date pollen accounts for its fertility promoting properties, whereas date pit was found a rich source for antioxidant polyphenols using metabolomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

C:

Coffee product

DPP:

Date palm pollen

DPPH:

2, 2-Diphenyl-1-picrylhydrazyl reagent

IC:

Inhibition concentration

NMR:

Nuclear magnetic resonance

OPLS-DA:

Partial least squares-discriminant analysis

P. :

Phoenix

PCA:

Principal component analysis

RW:

Raw date pits

RS:

Roasted date pits

UPLC:

Ultra performance liquid chromatography

References

  • Abu-Reidah, I. M., Gil-Izquierdo, Á., Medina, S., & Ferreres, F. (2017). Phenolic composition profiling of different edible parts and by-products of date palm (Phoenix dactylifera L.) by using HPLC-DAD-ESI/MSn. Food Research International, 100, 494–500. https://doi.org/10.1016/j.foodres.2016.10.018.

    Article  CAS  PubMed  Google Scholar 

  • Ahmed, A., Arshad, M. U., Saeed, F., Ahmed, R. S., & Chatha, S. A. S. (2016). Nutritional probing and HPLC profiling of roasted date pit powder. Pakistan Journal of Nutrition, 15, 229–237. https://doi.org/10.3923/pjn.2016.229.237.

    Article  CAS  Google Scholar 

  • Al Juhaimi, F., Özcan, M. M., Adiamo, O. Q., Alsawmahi, O. N., Ghafoor, K., & Babiker, E. E. (2018). Effect of date varieties on physico-chemical properties, fatty acid composition, tocopherol contents, and phenolic compounds of some date seed and oils. Journal of Food Processing and Preservation, 42, e13584. https://doi.org/10.1111/jfpp.13584.

    Article  CAS  Google Scholar 

  • Alberti-Dér, Á. (2013). LC-ESI-MSMS methods in profiling of flavonoid glycosides and phenolic acids in traditional medicinal plants Sempervivum tectorum L. and Corylus avellana L. PHD, Semmelweis University.

  • Al-Shahib, W., & Marshall, R. J. (2003). The fruit of the date palm: Its possible use as the best food for the future? International Journal of Food Sciences and Nutrition, 54, 247–259. https://doi.org/10.1080/09637480120091982.

    Article  PubMed  Google Scholar 

  • Asami, A., Hirai, Y., & Shoji, J. (1991). Studies on the constituents of Palmae plants. VI. Steroid saponins and flavonoids of leaves of Phoenix canariensis hort. ex Chabaud, P. humilis Royle var. hanceana Becc., P. dactylifera L., and Licuala spinosa Wurmb. Chemical & Pharmaceutical Bulletin, 39, 2053–2056. https://doi.org/10.1248/cpb.39.2053.

    Article  CAS  Google Scholar 

  • Baliga, M. S., Baliga, B. R. V., Kandathil, S. M., Bhat, H. P., & Vayalil, P. K. (2011). A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Food Research International, 44, 1812–1822. https://doi.org/10.1016/j.foodres.2010.07.004.

    Article  CAS  Google Scholar 

  • Buffo, R. A., & Cardelli-Freire, C. (2004). Coffee flavour: An overview. Flavour and Fragrance Journal, 19, 99–104. https://doi.org/10.1002/ffj.1325.

    Article  CAS  Google Scholar 

  • Croley, T. R., Hughes, R. J., Koenig, B. G., Metcalfe, C. D., & March, R. E. (2000). Mass spectrometry applied to the analysis of estrogens in the environment. Rapid Communications in Mass Spectrometry, 14, 1087–1093. https://doi.org/10.1002/1097-0231(20000715)14:13%3c1087:AID-RCM992%3e3.0.CO;2-3.

    Article  CAS  PubMed  Google Scholar 

  • Cuyckens, F., Rozenberg, R., de Hoffmann, E., & Claeys, M. (2001). Structure characterization of flavonoid O-diglycosides by positive and negative nano-electrospray ionization ion trap mass spectrometry. Journal of Mass Spectrometry, 36, 1203–1210. https://doi.org/10.1002/jms.224.

    Article  CAS  PubMed  Google Scholar 

  • Elisha, I. L., Dzoyem, J. P., McGaw, L. J., Botha, F. S., & Eloff, J. N. (2016). The anti-arthritic, anti-inflammatory, antioxidant activity and relationships with total phenolics and total flavonoids of nine South African plants used traditionally to treat arthritis. BMC Complementary and Alternative Medicine, 16, 1–10. https://doi.org/10.1186/s12906-016-1301-z.

    Article  CAS  Google Scholar 

  • Farag, M. A., Handoussa, H., Fekry, M. I., & Wessjohann, L. A. (2016). Metabolite profiling in 18 Saudi date palm fruit cultivars and their antioxidant potential via UPLC-qTOF-MS and multivariate data analyses. Food & Function, 7, 1077–1086. https://doi.org/10.1039/C5FO01570G.

    Article  CAS  Google Scholar 

  • Farag, M. A., Mohsen, M., Heinke, R., & Wessjohann, L. A. (2014). Metabolomic fingerprints of 21 date palm fruit varieties from Egypt using UPLC/PDA/ESI–qTOF-MS and GC–MS analyzed by chemometrics. Food Research International, 64, 218–226. https://doi.org/10.1016/j.foodres.2014.06.021.

    Article  CAS  PubMed  Google Scholar 

  • Farag, M. A., Porzel, A., Schmidt, J., & Wessjohann, L. A. (2012a). Metabolite profiling and fingerprinting of commercial cultivars of Humulus lupulus L. (hop): A comparison of MS and NMR methods in metabolomics. Metabolomics, 8, 492–507. https://doi.org/10.1007/s11306-011-0335-y.

    Article  CAS  Google Scholar 

  • Farag, M. A., Porzel, A., & Wessjohann, L. A. (2012b). Comparative metabolite profiling and fingerprinting of medicinal licorice roots using a multiplex approach of GC-MS, LC-MS and 1D NMR techniques. Phytochemistry, 76, 60–72. https://doi.org/10.1016/j.phytochem.2011.12.010.

    Article  CAS  PubMed  Google Scholar 

  • Ferreres, F., Llorach, R., & Gil-Izquierdo, A. (2004). Characterization of the interglycosidic linkage in di-, tri-, tetra- and pentaglycosylated flavonoids and differentiation of positional isomers by liquid chromatography/electrospray ionization tandem mass spectrometry. Journal of Mass Spectrometry, 39, 312–321. https://doi.org/10.1002/jms.586.

    Article  CAS  PubMed  Google Scholar 

  • Hamed, A. I., Ben Said, R., Al-Ayed, A. S., Moldoch, J., Mahalel, U. A., Mahmoud, A. M., et al. (2017). Fingerprinting of strong spermatogenesis steroidal saponins in male flowers of Phoenix dactylifera (Date Palm) by LC-ESI-MS. Natural Product Research, 31, 2024–2031. https://doi.org/10.1080/14786419.2016.1274887.

    Article  CAS  PubMed  Google Scholar 

  • Hammouda, H., Cherif, J. K., Trabelsi-Ayadi, M., Baron, A., & Guyot, S. (2013). Detailed polyphenol and tannin composition and its variability in Tunisian dates (Phoenix dactylifera L.) at different maturity stages. Journal of Agricultural and Food Chemistry, 61, 3252–3263. https://doi.org/10.1021/jf304614j.

    Article  CAS  PubMed  Google Scholar 

  • Harborne, J. B., & Baxter, H. (1993). Phytochemical dictionary: A handbook of bioactive compounds from plants. London: CRC Press.

    Google Scholar 

  • Hong, Y. J., Tomas-Barberan, F. A., Kader, A. A., & Mitchell, A. E. (2006). The flavonoid glycosides and procyanidin composition of Deglet Noor dates (Phoenix dactylifera). Journal of Agricultural and Food Chemistry, 54, 2405–2411. https://doi.org/10.1021/jf0581776.

    Article  CAS  PubMed  Google Scholar 

  • Jin, Y., Xiao, Y.-S., Zhang, F.-F., Xue, X.-Y., Xu, Q., & Liang, X.-M. (2008). Systematic screening and characterization of flavonoid glycosides in Carthamus tinctorius L. by liquid chromatography/UV diode-array detection/electrospray ionization tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 46, 418–430.

    Article  CAS  Google Scholar 

  • Juhaimi, F. A., Ghafoor, K., & Ozcan, M. M. (2012). Physical and chemical properties, antioxidant activity, total phenol and mineral profile of seeds of seven different date fruit (Phoenix dactylifera L.) varieties. International Journal of Food Sciences and Nutrition, 63, 84–89. https://doi.org/10.3109/09637486.2011.598851.

    Article  CAS  PubMed  Google Scholar 

  • Kazuno, S., Yanagida, M., Shindo, N., & Murayama, K. (2005). Mass spectrometric identification and quantification of glycosyl flavonoids, including dihydrochalcones with neutral loss scan mode. Analytical Biochemistry, 347, 182–192.

    Article  CAS  Google Scholar 

  • Ma, Y., Li, Q., Van den Heuvel, H., & Claeys, M. (1997). Characterization of flavone and flavonol aglycones by collision-induced dissociation tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 11, 1357–1364.

    Article  CAS  Google Scholar 

  • Mabry, V. T. J., Markham, K. R., Thomas, M. B., & Graf, E. (1970). The Systematic Identification of Flavonoids. Archiv der Pharmazie, 304, 715. https://doi.org/10.1002/ardp.19713040918.

    Article  Google Scholar 

  • Pérez-Magariño, S., Revilla, I., González-SanJosé, M. L., & Beltrán, S. (1999). Various applications of liquid chromatography–mass spectrometry to the analysis of phenolic compounds. Journal of Chromatography A, 847, 75–81. https://doi.org/10.1016/S0021-9673(99)00255-1.

    Article  PubMed  Google Scholar 

  • Poisson, L., Blank, I., Dunkel, A., & Hofmann, T. (2017). Chapter 12—The chemistry of roasting—Decoding flavor formation The Craft and Science of Coffee (pp. 273–309). London: Academic Press.

    Google Scholar 

  • Ramabulana, T. (2016). UPLC-MS based metabolomics investigation on the effects of gamma radiation on nutraceutical plants. PHD: University of Johannesburg.

    Google Scholar 

  • Rasheed, D. M., Porzel, A., Frolov, A., El Seedi, H. R., Wessjohann, L. A., & Farag, M. A. (2018). Comparative analysis of Hibiscus sabdariffa (roselle) hot and cold extracts in respect to their potential for α-glucosidase inhibition. Food Chemistry, 250, 236–244. https://doi.org/10.1016/j.foodchem.2018.01.020.

    Article  CAS  PubMed  Google Scholar 

  • Saito, T., Yamane, H., Murofushi, N., Takahashi, N., & Phinney, B. O. (1997). 4-O-Caffeoylshikimic and 4-O-(p-coumaroyl)shikimic acids from the Dwarf Tree Fern, Dicksonia antarctica. Bioscience, Biotechnology, and Biochemistry, 61, 1397–1398. https://doi.org/10.1271/bbb.61.1397.

    Article  CAS  Google Scholar 

  • Sánchez-Rabaneda, F., Jauregui, O., Lamuela-Raventós, R. M., Viladomat, F., Bastida, J., & Codina, C. (2004). Qualitative analysis of phenolic compounds in apple pomace using liquid chromatography coupled to mass spectrometry in tandem mode. Rapid Communications in Mass Spectrometry, 18, 553–563.

    Article  Google Scholar 

  • Scherer, M., Leuthäuser-Jaschinski, K., Ecker, J., Schmitz, G., & Liebisch, G. (2010). A rapid and quantitative LC-MS/MS method to profile sphingolipids. Journal of Lipid Research, 51, 2001–2011.

    Article  CAS  Google Scholar 

  • Schmeda-Hirschmann, G., Razmilic, I., Gutierrez, M. I., & Loyola, J. I. (1999). Proximate composition and biological activity of food plants gathered by Chilean Amerindians. Economic Botany, 53, 177–187.

    Article  Google Scholar 

  • Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787. https://doi.org/10.1021/ac051437y.

    Article  CAS  PubMed  Google Scholar 

  • Suresh, S., Guizani, N., Al-Ruzeiki, M., Al-Hadhrami, A., Al-Dohani, H., Al-Kindi, I., et al. (2013). Thermal characteristics, chemical composition and polyphenol contents of date-pits powder. Journal of Food Engineering, 119, 668–679. https://doi.org/10.1016/j.jfoodeng.2013.06.026.

    Article  CAS  Google Scholar 

  • Vlahov, G. (1999). Application of NMR to the study of olive oils. Progress in Nuclear Magnetic Resonance Spectroscopy, 35, 341–357.

    Article  CAS  Google Scholar 

  • Wojdyło, A., Oszmiański, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105, 940–949. https://doi.org/10.1016/j.foodchem.2007.04.038.

    Article  CAS  Google Scholar 

  • Wollgast, J., Pallaroni, L., Agazzi, M.-E., & Anklam, E. (2001). Analysis of procyanidins in chocolate by reversed-phase high-performance liquid chromatography with electrospray ionisation mass spectrometric and tandem mass spectrometric detection. Journal of Chromatography A, 926, 211–220.

    Article  CAS  Google Scholar 

  • Yakovishin, L., Lekar, A., Vetrova, E., Borisenko, N., Borisenko, S., & Grishkovets, V. (2012). Molecular complexes of the triterpene glycosides with l-tyrosine and their biological activity. Biopolymers and Cell, 28, 62–67.

    Article  CAS  Google Scholar 

  • Zargari, A. (1997). Medical Plants, vol. 3 (6th ed.). University of Tehran Press: Tehran.

    Google Scholar 

  • Zhang, Q., Zhang, J., Shen, J., Silva, A., Dennis, D. A., & Barrow, C. J. (2006). A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. Journal of Applied Phycology, 18, 445–450. https://doi.org/10.1007/s10811-006-9048-4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Mohamed A. Farag is grateful to Dr. Andrea Porzel for assistance with NMR analysis, Leibniz Institute for Plant Biochemistry, Halle, Germany. He also acknowledges the funding received from Jesour grant number 30, ASRT, Egypt and the Alexander von Humboldt foundation, Germany.

Author information

Authors and Affiliations

Authors

Contributions

AMO and MAF conducted the experiments; AMO performed the data analysis, AMF revised assignments, AMS and CGM designed the study and edited the manuscript. AMO and MAF wrote the manuscript.

Corresponding author

Correspondence to Mohamed A. Farag.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2209 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otify, A.M., El-Sayed, A.M., Michel, C.G. et al. Metabolites profiling of date palm (Phoenix dactylifera L.) commercial by-products (pits and pollen) in relation to its antioxidant effect: a multiplex approach of MS and NMR metabolomics. Metabolomics 15, 119 (2019). https://doi.org/10.1007/s11306-019-1581-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-019-1581-7

Keywords

Navigation