Advertisement

Metabolomics

, 15:109 | Cite as

Beyond the antibodies: serum metabolomic profiling of myasthenia gravis

  • Derrick BlackmoreEmail author
  • Zaeem Siddiqi
  • Liang Li
  • Nan Wang
  • Walter Maksymowych
Original Article

Abstract

Introduction

Myasthenia gravis (MG) is a chronic, potentially debilitating autoimmune disease characterized by weakness and rapid fatigue of the voluntary muscles that worsens on exertion. Left untreated, MG symptoms may cause significant morbidity or even death. To date, no robust biological marker is available to follow the course of the disease. Therefore, new diagnostic approaches and biological markers are essential not only for improved diagnosis of the disease but for improved outcomes.

Objectives

The present study applied a two-control, multi-label metabolomics profiling approach as a potential strategy for the identification of biomarkers unique to myasthenia gravis (MG).

Methods

Metabolic analyses using acid- and dansyl-labelled serum from seropositive MG (n = 46), rheumatoid arthritis (RA) (n = 23) and healthy controls (HC) (n = 49) were performed on samples from adult patients presenting to the University of Alberta Hospital neuromuscular and rheumatology clinics. Comparisons between patients with MG vs. HC, and RA vs. HC were made using univariate and multivariate statistics.

Results

Serum biomarker patterns were statistically significantly different between groups. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) models exhibited considerable distinction between all groups. Metabolites were then filtered to remove peak pairs common to both disease cohorts. Combined metabolite panels revealed clear separation between MG and HC for both library-matched (AUROC: 0.92 ± 0.03) and highest AUC patients (AUROC: 0.94 ± 0.05).

Conclusion

In patients presenting to the clinic with seropositive MG, metabolomic profiling is capable of distinguishing patients with disease from those without. These results provide an important first step towards a potential biomarker for improving MG identification.

Keywords

Metabolomics Serum Autoimmune Myasthenia gravis Rheumatoid arthritis Immunometabolomics Neuromuscular disease 

Notes

Author contributions

DB developed the concept and designed the experiment, acquired all blood samples but those from rheumatoid arthritis patients, conducted all databasing, bioinformatics analyses and metabolite-database matching. Further, DB prepared all charts, images and tables and wrote the paper. ZS provided project oversight as the clinical expert in myasthenia gravis. ZS also offered conceptual advice, supervised project analysis and edited the manuscript. LL developed the chemical labelling process and several chemometric analysis tools used in this study as well as the chemical identification libraries used in the positive identification of observed metabolites. LL provided oversight in the choice of chemical and statistical techniques used to characterize the metabolome. LL also offered conceptual advice, supervised project analysis and edited the manuscript. NW performed the sample preparation, chemical labelling and mass spectrometric analysis. WM provided the rheumatoid arthritis samples for the disease control cohort. All authors reviewed the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Human research

This work received ethics approval from the University of Alberta Research Ethics Board and is in compliance with the ethical standards of this institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11306_2019_1571_MOESM1_ESM.docx (13 kb)
Electronic supplementary material 1 (DOCX 13 kb)
11306_2019_1571_MOESM2_ESM.pdf (1.2 mb)
Electronic supplementary material 2 (PDF 1244 kb)

References

  1. Adamczyk-Sowa, M., Bieszczad-Bedrejczuk, E., Galiniak, S., Rozmiłowska, I., Czyżewski, D., Bartosz, G., et al. (2017). Oxidative modifications of blood serum proteins in myasthenia gravis. Journal of Neuroimmunology, 305, 145–153.  https://doi.org/10.1016/j.jneuroim.2017.01.019.CrossRefPubMedGoogle Scholar
  2. Astudillo, A. M., Balgoma, D., Balboa, M. A., & Balsinde, J. (2012). Dynamics of arachidonic acid mobilization by inflammatory cells. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1821(2), 249–256.  https://doi.org/10.1016/j.bbalip.2011.11.006.CrossRefGoogle Scholar
  3. Bass JD, D. A., & R. D. (2015). qvalue: Q-value estimation for false discovery rate control. R package version 2.10.0. http://github.com/jdstorey/qvalue
  4. Benatar, M., Sanders, D. B., Burns, T. M., Cutter, G. R., Guptill, J. T., Baggi, F., et al. (2012). Recommendations for myasthenia gravis clinical trials. Muscle and Nerve, 45(6), 909–917.  https://doi.org/10.1002/mus.23330.CrossRefPubMedGoogle Scholar
  5. Boothby, M., & Rickert, R. C. (2017). Metabolic regulation of the immune humoral response. Immunity, 46(5), 743–755.  https://doi.org/10.1016/j.immuni.2017.04.009.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cobb, J., Eckhart, A., Motsinger-Reif, A., Carr, B., Groop, L., & Ferrannini, E. (2016). α-hydroxybutyric acid is a selective metabolite biomarker of impaired glucose tolerance. Diabetes Care, 39(6), 988–995.  https://doi.org/10.2337/dc15-2752.CrossRefPubMedGoogle Scholar
  7. Cocco, E., Murgia, F., Lorefice, L., Barberini, L., Poddighe, S., Frau, J., et al. (2016). (1)H-NMR analysis provides a metabolomic profile of patients with multiple sclerosis. Neurology(R) Neuroimmunology & Neuroinflammation, 3(1), e185.  https://doi.org/10.1212/nxi.0000000000000185.CrossRefGoogle Scholar
  8. Cummings, B. S., McHowat, J., & Schnellmann, R. G. (2000). Phospholipase A2s in Cell Injury and Death. Journal of Pharmacology and Experimental Therapeutics, 294(3), 793–799.PubMedGoogle Scholar
  9. Ferrannini, E., Natali, A., Camastra, S., Nannipieri, M., Mari, A., Adam, K.-P., et al. (2013). Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance. Diabetes, 62(5), 1730–1737.  https://doi.org/10.2337/db12-0707.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Franken, C., Lambrechts, N., Govarts, E., Koppen, G., Den Hond, E., Ooms, D., et al. (2017). Phthalate-induced oxidative stress and association with asthma-related airway inflammation in adolescents. International Journal of Hygiene and Environmental Health, 220(2), 468–477.  https://doi.org/10.1016/J.IJHEH.2017.01.006.CrossRefPubMedGoogle Scholar
  11. Gall, W. E., Beebe, K., Lawton, K. A., Adam, K.-P., Mitchell, M. W., Nakhle, P. J., et al. (2010a). α-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS ONE, 5(5), e10883.  https://doi.org/10.1371/journal.pone.0010883.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Gall, W. E., Beebe, K., Lawton, K. A., Adam, K. P., Mitchell, M. W., Nakhle, P. J., et al. (2010b). α-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS ONE, 5(5), e10883.  https://doi.org/10.1371/journal.pone.0010883.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., et al. (2004). Bioconductor: Open software development for computational biology and bioinformatics. Genome Biology, 5(10), R80.  https://doi.org/10.1186/gb-2004-5-10-r80.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Guptill, J. T., & Sanders, D. B. (2010). Update on muscle-specific tyrosine kinase antibody positive myasthenia gravis. Current Opinion in Neurology, 23(5), 530–535.  https://doi.org/10.1097/WCO.0b013e32833c0982.CrossRefPubMedGoogle Scholar
  15. Hoffmann, G. F., Meier-Augenstein, W., Stöckler, S., Surtees, R., Rating, D., & Nyhan, W. L. (1993). Physiology and pathophysiology of organic acids in cerebrospinal fluid. Journal of Inherited Metabolic Disease, 16(4), 648–669.  https://doi.org/10.1007/BF00711898.CrossRefPubMedGoogle Scholar
  16. Howard, F. M., Lennon, V. A., Finley, J., Matsumoto, J., & Elveback, L. R. (1987). Clinical correlations of antibodies that bind, block, or modulate human acetylcholine receptors in myasthenia gravis. Annals of the New York Academy of Sciences, 505, 526–538.CrossRefGoogle Scholar
  17. Huan, T., Tang, C., Li, R., Shi, Y., Lin, G., & Li, L. (2015). MyCompoundID MS/MS search: Metabolite identification using a library of predicted fragment-ion-spectra of 383,830 possible human metabolites. Analytical Chemistry, 87(20), 10619–10626.  https://doi.org/10.1021/acs.analchem.5b03126.CrossRefPubMedGoogle Scholar
  18. Hutchinson, D. (1999). Classification criteria: The 1987 American Rheumatism Association revised criteria for the classification of rheumatoid arthritis. CPD Rheumatology, 1(1), 13–14.Google Scholar
  19. Kaminski, H. J., Kusner, L. L., Wolfe, G. I., Aban, I., Minisman, G., Conwit, R., et al. (2012). Biomarker development for myasthenia gravis. Annals of the New York Academy of Sciences, 1275(1), 101–106.  https://doi.org/10.1111/j.1749-6632.2012.06787.x.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lassmann, H., Van Horssen, J., & Mahad, D. (2012). Progressive multiple sclerosis: Pathology and pathogenesis. Nature Reviews Neurology, 8(11), 647–656.  https://doi.org/10.1038/nrneurol.2012.168.CrossRefPubMedGoogle Scholar
  21. Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443(7113), 787–795.  https://doi.org/10.1038/nature05292.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lindahl, A., Forshed, J., & Nordström, A. (2016). Overlap in serum metabolic profiles between non-related diseases: Implications for LC-MS metabolomics biomarker discovery. Biochemical and Biophysical Research Communications, 478(3), 1472–1477.  https://doi.org/10.1016/J.BBRC.2016.08.155.CrossRefPubMedGoogle Scholar
  23. Loftus, R. M., & Finlay, D. K. (2016). Immunometabolism: Cellular metabolism turns immune regulator. The Journal of biological chemistry, 291(1), 1–10.  https://doi.org/10.1074/jbc.R115.693903.CrossRefPubMedGoogle Scholar
  24. Lone, A. M., & Taskén, K. (2013). Proinflammatory and immunoregulatory roles of eicosanoids in T cells. Frontiers in Immunology, 4, 130.  https://doi.org/10.3389/fimmu.2013.00130.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lu, Y., Wang, C., Chen, Z., Zhao, H., Chen, J., Liu, X., et al. (2012). Serum metabolomics for the diagnosis and classification of myasthenia gravis. Metabolomics, 8(4), 704–713.  https://doi.org/10.1007/s11306-011-0364-6.CrossRefGoogle Scholar
  26. Lunt, S. Y., & Vander Heiden, M. G. (2011). Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annual Review of Cell and Developmental Biology, 27(1), 441–464.  https://doi.org/10.1146/annurev-cellbio-092910-154237.CrossRefPubMedGoogle Scholar
  27. Manley, K., Han, W., Zelin, G., & Lawrence, D. A. (2018). Crosstalk between the immune, endocrine, and nervous systems in immunotoxicology. Current Opinion in Toxicology, 10, 37–45.  https://doi.org/10.1016/J.COTOX.2017.12.003.CrossRefGoogle Scholar
  28. Meriggioli, M. N., & Sanders, D. B. (2012). Muscle autoantibodies in myasthenia gravis: Beyond diagnosis? Expert review of clinical immunology, 8(5), 427–438.  https://doi.org/10.1586/eci.12.34.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Narang, A. S., & Boddu, S. H. S. (Eds.). (2015). Excipient applications in formulation design and drug delivery. Cham: Springer.  https://doi.org/10.1007/978-3-319-20206-8 Google Scholar
  30. Nguyen, A., & Bouscarel, B. (2008). Bile acids and signal transduction: Role in glucose homeostasis. Cellular Signalling, 20(12), 2180–2197.  https://doi.org/10.1016/J.CELLSIG.2008.06.014.CrossRefPubMedGoogle Scholar
  31. Park, H., Bourla, A. B., Kastner, D. L., Colbert, R. A., & Siegel, R. M. (2012). Lighting the fires within: The cell biology of autoinflammatory diseases. Nature Reviews Immunology, 12(8), 570–580.  https://doi.org/10.1038/nri3261.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Pollard, T. D., Thomas, D., Earnshaw, W. C., Lippincott-Schwartz, J., & Johnson, G. T. (2016). Cell biology (3rd ed.). Amsterdam: Elsevier.Google Scholar
  33. Sengupta, M., Cheema, A., Kaminski, H. J., Kusner, L. L., Gribbestad, I., et al. (2014). serum metabolomic response of myasthenia gravis patients to chronic prednisone treatment. PLoS ONE, 9(7), e102635.  https://doi.org/10.1371/journal.pone.0102635.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Staley, C., Weingarden, A. R., Khoruts, A., & Sadowsky, M. J. (2017). Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Applied Microbiology and Biotechnology, 101(1), 47–64.  https://doi.org/10.1007/s00253-016-8006-6.CrossRefPubMedGoogle Scholar
  35. Storey, J. D. (2003). The positive false discovery rate: A Bayesian interpretation and the q-value. The Annals of Statistics, 31(6), 2013–2035.  https://doi.org/10.1214/aos/1074290335.CrossRefGoogle Scholar
  36. Stuerenburg, H. J. (2000). The roles of carnosine in aging of skeletal muscle and in neuromuscular diseases. Biochemistry (Moscow), 65(7), 862–865.Google Scholar
  37. Tomiko, K., Toshihiro, S., Yoshito, I., Masahiro, M., Makoto, Y., Yusuke, S., et al. (1983). Studies of urinary organic acid profiles of a patient with dihydrolipoyl dehydrogenase deficiency. Clinica Chimica Acta, 133(2), 133–140.  https://doi.org/10.1016/0009-8981(83)90398-4.CrossRefGoogle Scholar
  38. Win-Shwe, T.-T., Yanagisawa, R., Koike, E., Nitta, H., & Takano, H. (2013). Expression levels of neuroimmune biomarkers in hypothalamus of allergic mice after phthalate exposure. Journal of Applied Toxicology, 33(10), 1070–1078.  https://doi.org/10.1002/jat.2835.CrossRefPubMedGoogle Scholar
  39. Xia, J., Mandal, R., Sinelnikov, I. V., Broadhurst, D., & Wishart, D. S. (2012). MetaboAnalyst 2.0–a comprehensive server for metabolomic data analysis. Nucleic Acids Research, 40(W1), W127–W133.  https://doi.org/10.1093/nar/gks374.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Yegambaram, M., Manivannan, B., Beach, T. G., & Halden, R. U. (2015). Role of environmental contaminants in the etiology of Alzheimer’s disease: A review. Current Alzheimer Research, 12(2), 116–146.  https://doi.org/10.2174/1567205012666150204121719.CrossRefPubMedGoogle Scholar
  41. Zhao, S., Luo, X., & Li, L. (2016). Chemical isotope labeling LC-MS for high coverage and quantitative profiling of the hydroxyl submetabolome in metabolomics. Analytical Chemistry, 88(21), 10617–10623.  https://doi.org/10.1021/acs.analchem.6b02967.CrossRefPubMedGoogle Scholar
  42. Zhou, R., Tseng, C.-L., Huan, T., & Li, L. (2014). IsoMS: automated processing of LC-MS data generated by a chemical isotope labeling metabolomics platform. Analytical Chemistry, 86(10), 4675–4679.  https://doi.org/10.1021/ac5009089.CrossRefPubMedGoogle Scholar
  43. Zhu, C., Fuchs, C. D., Halilbasic, E., & Trauner, M. (2016). Bile acids in regulation of inflammation and immunity: Friend or foe? Clinical and Experimental Rheumatology, 34(4 Suppl 98), 25–31.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of NeurologyUniversity of AlbertaEdmontonCanada
  2. 2.Department of ChemistryUniversity of AlbertaEdmontonCanada
  3. 3.568A Heritage Medical Research CentreUniversity of AlbertaEdmontonCanada

Personalised recommendations