Abstract
Introduction
About 90% of cases of Parkinson’s disease (PD) are idiopathic and attempts to understand pathogenesis typically assume a multifactorial origin. Multifactorial diseases can be studied using metabolomics, since the cellular metabolome reflects the interplay between genes and environment.
Objective
The aim of our case–control study is to compare metabolomic profiles of whole blood obtained from treated PD patients, de-novo PD patients and controls, and to study the perturbations correlated with disease duration, disease stage and motor impairment.
Methods
We collected blood samples from 16 drug naïve parkinsonian patients, 84 treated parkinsonian patients, and 42 age matched healthy controls. Metabolomic profiles have been obtained using gas chromatography coupled to mass spectrometry. Multivariate statistical analysis has been performed using supervised models; partial least square discriminant analysis and partial least square regression.
Results
This approach allowed separation between discrete classes and stratification of treated patients according to continuous variables (disease duration, disease stage, motor score). Analysis of single metabolites and their related metabolic pathways revealed unexpected possible perturbations related to PD and underscored existing mechanisms that correlated with disease onset, stage, duration, motor score and pharmacological treatment.
Conclusion
Metabolomics can be useful in pathogenetic studies and biomarker discovery. The latter needs large-scale validation and comparison with other neurodegenerative conditions.
This is a preview of subscription content, access via your institution.



Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
Asselta, R., Rimoldi, V., Siri, C., Cilia, R., Guella, I., Tesei, S., et al. (2014). Glucocerebrosidase mutations in primary parkinsonism. Parkinsonism and Related Disorders, 20(11), 1215–1220. https://doi.org/10.1016/j.parkreldis.2014.09.003.
Bertoncini, C. W., Fernandez, C. O., Griesinger, C., Jovin, T. M., & Zweckstetter, M. (2005). Familial mutants of α-synuclein with increased neurotoxicity have a destabilized conformation. Journal of Biological Chemistry, 280(35), 30649–30652. https://doi.org/10.1074/jbc.C500288200.
Bijlsma, S., Bobeldijk, I., Verheij, E. R., Ramaker, R., Kochhar, S., Macdonald, I. A., et al. (2006). Large-scale human metabolomics studies: A strategy for data (pre-) processing and validation. Analytical Chemistry, 78(2), 567–574. https://doi.org/10.1021/ac051495j.
Błaszczyk, J. W. (2016). Parkinson’s disease and neurodegeneration: GABA-collapse hypothesis. Frontiers in Neuroscience, 10, 269. https://doi.org/10.3389/fnins.2016.00269.
Bogdanov, M., Matson, W. R., Wang, L., Matson, T., Saunders-Pullman, R., Bressman, S. S., et al. (2008). Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain : A Journal of Neurology, 131(Pt 2), 389–396. https://doi.org/10.1093/brain/awm304.
Bourassa, M. W., Alim, I., Bultman, S. J., & Ratan, R. R. (2016). Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Epigenetics and Disorders of the Nervous System, 625, 56–63. https://doi.org/10.1016/j.neulet.2016.02.009.
Chakraborty, J., Basso, V., & Ziviani, E. (2017). Post translational modification of Parkin. Biology Direct, 12, 6. https://doi.org/10.1186/s13062-017-0176-3.
Chen, X., Xie, C., Sun, L., Ding, J., & Cai, H. (2015). Longitudinal metabolomics profiling of Parkinson’s disease-related α-synuclein A53T Transgenic mice. PLoS ONE, 10(8), e0136612. https://doi.org/10.1371/journal.pone.0136612.
D’Alessandro, A., Giardina, B., Gevi, F., Timperio, A. M., & Zolla, L. (2012). Clinical metabolomics: The next stage of clinical biochemistry. Blood Transfusion, 10(Suppl 2), s19–s24. https://doi.org/10.2450/2012.005S.
de Lau, L. M. L., & Breteler, M. M. B. (2006). Epidemiology of Parkinson’s disease. The Lancet Neurology, 5(6), 525–535. https://doi.org/10.1016/S1474-4422(06)70471-9.
DeLong, M. R., & Wichmann, T. (2015). Basal ganglia circuits as targets for neuromodulation in Parkinson disease. JAMA Neurology, 72(11), 1354–1360. https://doi.org/10.1001/jamaneurol.2015.2397.
Dunn, W. B., Broadhurst, D. I., Atherton, H. J., Goodacre, R., & Griffin, J. L. (2011). Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chemical Society Reviews, 40(1), 387–426. https://doi.org/10.1039/b906712b.
Han, W., Sapkota, S., Camicioli, R., Dixon, R. A., & Li, L. (2017). Profiling novel metabolic biomarkers for Parkinson’s disease using in-depth metabolomic analysis. Movement Disorders : Official Journal of the Movement Disorder Society, 32(12), 1720–1728. https://doi.org/10.1002/mds.27173.
Hatano, T., Saiki, S., Okuzumi, A., Mohney, R. P., & Hattori, N. (2016). Identification of novel biomarkers for Parkinson’s disease by metabolomic technologies. Journal of Neurology, Neurosurgery and Psychiatry, 87(3), 295. https://doi.org/10.1136/jnnp-2014-309676.
Hu, Q., & Wang, G. (2016). Mitochondrial dysfunction in Parkinson’s disease. Translational Neurodegeneration, 5, 14. https://doi.org/10.1186/s40035-016-0060-6.
Hughes, A. J., Daniel, S. E., Kilford, L., & Lees, A. J. (1992). Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. Journal of Neurology, Neurosurgery and Psychiatry, 55(3), 181–184.
Johansen, K. K., Wang, L., Aasly, J. O., White, L. R., Matson, W. R., Henchcliffe, C., et al. (2009). Metabolomic profiling in LRRK2-related Parkinson’s disease. PLoS ONE, 4(10), e7551. https://doi.org/10.1371/journal.pone.0007551.
Kalia, L. V., & Lang, A. E. (2015). Parkinson’s disease. Lancet (London, England), 386(9996), 896–912. https://doi.org/10.1016/S0140-6736(14)61393-3.
Karnovsky, A., Weymouth, T., Hull, T., Tarcea, V. G., Scardoni, G., Laudanna, C., et al. (2012). Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data. Bioinformatics (Oxford, England), 28(3), 373–380. https://doi.org/10.1093/bioinformatics/btr661.
Katsuki, H., Nonaka, M., Shirakawa, H., Kume, T., & Akaike, A. (2004). Endogenous d-serine is involved in induction of neuronal death by. The Journal of Pharmacology and Experimental therapeutics, 311(2), 836–844. https://doi.org/10.1124/jpet.104.070912.
Kempuraj, D., Thangavel, R., Natteru, P., Selvakumar, G., Saeed, D., Zahoor, H., et al. (2016). Neuroinflammation Induces Neurodegeneration. Journal of Neurology, Neurosurgery and Spine, 1(1), 1003.
Kidd, S. K., & Schneider, J. S. (2010). Protection of dopaminergic cells from MPP + -mediated toxicity by histone deacetylase inhibition. Brain Research, 1354, 172–178. https://doi.org/10.1016/j.brainres.2010.07.041.
Klein, C., & Westenberger, A. (2012). Genetics of Parkinson’s Disease. Cold Spring Harbor Perspectives in Medicine, 2(1), a008888. https://doi.org/10.1101/cshperspect.a008888.
Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. Journal of Statistical Software, 1(5). https://www.jstatsoft.org/v028/i05
Lan, A.-P., Chen, J., Zhao, Y., Chai, Z., & Hu, Y. (2017). mTOR signaling in Parkinson’s disease. NeuroMolecular Medicine, 19(1), 1–10. https://doi.org/10.1007/s12017-016-8417-7.
LeWitt, P. A., Li, J., Lu, M., Guo, L., & Auinger, P. (2017). Metabolomic biomarkers as strong correlates of Parkinson disease progression. Neurology, 88(9), 862–869. https://doi.org/10.1212/WNL.0000000000003663.
Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R., & Pfister, H. (2014). UpSet: Visualization of intersecting sets. IEEE Transactions on Visualization and Computer Graphics, 20(12), 1983–1992. https://doi.org/10.1109/TVCG.2014.2346248.
Lill, C. M. (2016). Genetics of Parkinson’s disease. Molecular and Cellular Probes, 30(6), 386–396. https://doi.org/10.1016/j.mcp.2016.11.001.
Lim, C. K., Fernandez-Gomez, F. J., Braidy, N., Estrada, C., Costa, C., Costa, S., et al. (2017). Involvement of the kynurenine pathway in the pathogenesis of Parkinson’s disease. Progress in Neurobiology, 155, 76–95. https://doi.org/10.1016/j.pneurobio.2015.12.009.
Luan, H., Liu, L.-F., Tang, Z., Zhang, M., Chua, K.-K., Song, J.-X., et al. (2015). Comprehensive urinary metabolomic profiling and identification of potential noninvasive marker for idiopathic Parkinson’s disease. Scientific Reports, 5, 13888. https://doi.org/10.1038/srep13888.
Manoharan, S., Guillemin, G. J., Abiramasundari, R. S., Essa, M. M., Akbar, M., & Akbar, M. D. (2016). The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease: A mini review. Oxidative Medicine and Cellular Longevity, 2016, 8590578. https://doi.org/10.1155/2016/8590578.
Mayer, E. A. (2011). Gut feelings: The emerging biology of gut-brain communication. Nature Reviews Neuroscience, 12(8), 453–466. https://doi.org/10.1038/nrn3071.
Mazzulli, J. R., Xu, Y.-H., Sun, Y., Knight, A. L., McLean, P. J., Caldwell, G. A., et al. (2011). Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell, 146(1), 37–52. https://doi.org/10.1016/j.cell.2011.06.001.
Meiser, J., Delcambre, S., Wegner, A., Jager, C., Ghelfi, J., d’Herouel, A. F., et al. (2016). Loss of DJ-1 impairs antioxidant response by altered glutamine and serine metabolism. Neurobiology of Disease, 89, 112–125. https://doi.org/10.1016/j.nbd.2016.01.019.
Mevik, B.-H., & Wehrens, R. (2007). The pls package: Principal component and partial least squares regression in R. Journal of Statistical Software, 1(2). https://www.jstatsoft.org/v018/i02
Molina, J. A., Jimenez-Jimenez, F. J., Gomez, P., Vargas, C., Navarro, J. A., Orti-Pareja, M., et al. (1997). Decreased cerebrospinal fluid levels of neutral and basic amino acids in patients with Parkinson’s disease. Journal of the Neurological Sciences, 150(2), 123–127.
Nishida, K., Ono, K., Kanaya, S., & Takahashi, K. (2014). KEGGscape: A Cytoscape app for pathway data integration. F1000Research, 3, 144. https://doi.org/10.12688/f1000research.4524.1.
Noyce, A. J., Bestwick, J. P., Silveira-Moriyama, L., Hawkes, C. H., Giovannoni, G., Lees, A. J., et al. (2012). Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Annals of Neurology, 72(6), 893–901. https://doi.org/10.1002/ana.23687.
Parashar, A., & Udayabanu, M. (2017). Gut microbiota: Implications in Parkinson’s disease. Parkinsonism and Related Disorders, 38, 1–7. https://doi.org/10.1016/j.parkreldis.2017.02.002.
Roede, J. R., Uppal, K., Park, Y., Lee, K., Tran, V., Walker, D., et al. (2013). Serum metabolomics of slow vs. rapid motor progression Parkinson’s disease: A pilot study. PLoS ONE, 8(10), e77629. https://doi.org/10.1371/journal.pone.0077629.
Sampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E., et al. (2016). Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 167(6), 1469–1480.e12. https://doi.org/10.1016/j.cell.2016.11.018.
Shafei, M. A., Harris, M., & Conway, M. E. (2017). Divergent metabolic regulation of autophagy and mTORC1—Early events in Alzheimer’s disease? Frontiers in Aging Neuroscience, 9, 173. https://doi.org/10.3389/fnagi.2017.00173.
Sharma, S., Taliyan, R., & Singh, S. (2015). Beneficial effects of sodium butyrate in 6-OHDA induced neurotoxicity and behavioral abnormalities: Modulation of histone deacetylase activity. Behavioural Brain Research, 291, 306–314. https://doi.org/10.1016/j.bbr.2015.05.052.
St Laurent, R., O’Brien, L. M., & Ahmad, S. T. (2013). Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced Drosophila model of Parkinson’s disease. Neuroscience, 246, 382–390. https://doi.org/10.1016/j.neuroscience.2013.04.037.
Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., et al. (2007). Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics : Official Journal of the Metabolomic Society, 3(3), 211–221. https://doi.org/10.1007/s11306-007-0082-2.
Sysi-Aho, M., Katajamaa, M., Yetukuri, L., & Oresic, M. (2007). Normalization method for metabolomics data using optimal selection of multiple internal standards. BMC Bioinformatics, 8, 93. https://doi.org/10.1186/1471-2105-8-93.
Trezzi, J.-P., Galozzi, S., Jaeger, C., Barkovits, K., Brockmann, K., Maetzler, W., et al. (2017). Distinct metabolomic signature in cerebrospinal fluid in early Parkinson’s disease. Movement Disorders: Official Journal of the Movement Disorder Society, 32(10), 1401–1408. https://doi.org/10.1002/mds.27132.
Trezzi, J.-P., Hiller, K., & Mollenhauer, B. (2018). The importance of an independent validation cohort for metabolomics biomarker studies. Movement Disorders: Official Journal of the Movement Disorder Society, 33(5), 856. https://doi.org/10.1002/mds.27374.
Widner, B., Leblhuber, F., & Fuchs, D. (2002). Increased neopterin production and tryptophan degradation in advanced Parkinson’s disease. Journal of Neural Transmission (Vienna, Austria : 1996), 109(2), 181–189. https://doi.org/10.1007/s007020200014.
World Medical Association. (2013). World medical association declaration of helsinki: Ethical principles for medical research involving human subjects. JAMA, 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053.
Acknowledgements
We are grateful to prof. Steven Symes who supported the linguistic revision of the paper. The study was supported by “Fondazione Grigioni per il Morbo di Parkinson”.
Author information
Authors and Affiliations
Contributions
JT, AL, PB and MA conceived the study. JT and AL wrote the first draft of the manuscript. MA and PB reviewed and critiqued the drafts. JT conceived and performed statistical analysis. CV, KL, MS, AC, MCS and MA recruited the patients and performed the clinical evaluation. All the authors read, critiqued and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
All the authors have no conflict of interest.
Ethical approval
All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by the local ethics committee and a written consent form was signed by each participant.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Troisi, J., Landolfi, A., Vitale, C. et al. A metabolomic signature of treated and drug-naïve patients with Parkinson’s disease: a pilot study. Metabolomics 15, 90 (2019). https://doi.org/10.1007/s11306-019-1554-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11306-019-1554-x
Keywords
- Metabolome
- Parkinson’s disease
- Gas chromatography–mass spectrometry