Skip to main content
Log in

Influence of environmental factors on the volatile composition of two Brazilian medicinal plants: Mikania laevigata and Mikania glomerata

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Mikania laevigata Sch.Bip. ex Baker and Mikania glomerata Spreng. are medicinal plants popularly known as guaco, used for inflammatory diseases of the respiratory system, included in pharmaceutical formularies and often used without distinction. However, several studies show that the chemical composition varies between these species, as well as in plants are subjected to different environmental stresses. Few studies have been carried out with the volatile compounds of guaco, even less about the changes in volatile composition due to abiotic variation.

Objective

The aim of this work was to evaluate how volatile compounds vary according to the seasons and at different times of the day and if these compounds are influenced by the variations in the growth conditions such as: temperature, luminosity and water.

Methods

The headspace volatiles of the leaves were sampled by solid phase micro extraction and analyzed by gas chromatography–mass spectrometry. Untargeted metabolomic analysis of the resulting chromatograms and chemometrics was applied. The chemical profile of the volatiles of M. laevigata and M. glomerata were different; being clearly separated in the exploratory grouping analyzes (PCA), followed by analysis of variance of the marker compounds of both species.

Results

Only M. laevigata contained coumarin, considered to be the chemical marker of both species and to be responsible for the therapeutic activities. There was no significant difference between the morning and afternoon collections of either species. Coumarin, α-pinene and bicyclogermacrene were more intense in the volatiles of M. laevigata throughout the year and responsible for grouping the samples of this species. For M. glomerata, hexanal and 2-hexenal were responsible for grouping the samples and were more intense in all months. The growth conditions tested affected the intensity of specific compounds in the chromatograms. Some compounds were less intense with the increase of the temperature and in the plants subjected to full sunlight. However, certain volatile compounds—such as pinenes—were more intense in plants suffering drought.

Conclusion

The variation in composition between species of guaco was greater than those observed in the seasonal and cultivation studies, indicating that these species cannot be used indistinctly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams, R. P. (2007) Identification of essential oil components by gas chromatography/mass spectrometry (pp. 469). Allured Publishing Corporation.

  • Almeida, C. L., Xavier, R. M., Borghi, A. A., Santos, V. F., & Sawaya, A. C. H. F. (2017). Effect of seasonality and growth conditions on the content of coumarin, chlorogenic acid and dicaffeoylquinic acids in Mikania laevigata Schultz and Mikania glomerata Sprengel (Asteraceae) by UHPLC–MS/MS. International Journal of Mass Spectrometry, 418, 162–172. https://doi.org/10.1016/j.ijms.2016.09.016.

    Article  CAS  Google Scholar 

  • Bertolucci, S. K., Pereira, A. B., Pinto, J. E., de Aquino Ribeiro, J. A., de Oliveira, A. B., & Braga, F. C. (2009). Development and validation of an RP-HPLC method for quantification of cinnamic acid derivatives and kaurane-type diterpenes in Mikania laevigata and Mikania glomerata. Planta Medicinal, 75(3), 280–285. https://doi.org/10.1055/s-0028-1112195.

    Article  CAS  Google Scholar 

  • Bertolucci, S. K., Pereira, A. B., Pinto, J. E., de Oliveira, A. B., & Braga, F. C. (2013). Seasonal variation on the contents of coumarin and kaurane-type diterpenes in Mikania laevigata and M. glomerata leaves under different shade levels. Chemistry & Biodiversity, 10(2), 288–295. https://doi.org/10.1002/cbdv.201200166.

    Article  CAS  Google Scholar 

  • Boeger, M. R. T., Alquini, Y., & Negrelle, R. R. B. (2004). Características anatômicas da região nodal de estacas em diferentes fases de desenvolvimento de guaco (Mikania glomerata Sprengel – Asteraceae) e formação de raízes adventícias. Revista Brasileira de Plantas Medicinais, 6(2), 1–6.

    Google Scholar 

  • Bolina, R. C., Garcia, E. D. F., & Duarte, M. G. R. (2009). Estudo comparativo da composição química das espécies vegetais Mikania glomerata Sprengel e Mikania laevigata Schultz Bip. ex Baker. Brazilian Journal of Pharmacognosy, 19(1), 294–298.

    Article  CAS  Google Scholar 

  • Brasil. (2011). Formulário de Fitoterápicos da Farmacopéia Brasileira 1ed. Brasilia: Agência Nacional de Vigilância Sanitária (ANVISA).

  • Can’ Ani, A., Mühlemann, J. K., Ravid, J., Masci, T., Klempien, A., Nguyen, T. T., et al. (2015). Petunia × hybrida floral scent production is negatively affected by high-temperature growth conditions. Plant, Cell and Environment, 38(7), 1333–1346. https://doi.org/10.1111/pce.12486.

    Article  CAS  Google Scholar 

  • Cappelaro, E. A., & Yariwake, J. H. (2015). HS-SPME-GC-MS analysis of volatile and semi-volatile compounds from dried leaves of Mikania glomerata Sprengel. Química Nova, 38(3), 427–430.

    CAS  Google Scholar 

  • Costa, V. C. O., Borghi, A. A., Mayer, J. L. S., & Sawaya, A. C. H. F. (2018). Comparison of the morphology, anatomy, and chemical profile of Mikania glomerata and Mikania laevigata. Planta Medicinal, 84(3), 191–200. https://doi.org/10.1055/s-0043-119226.

    Article  CAS  Google Scholar 

  • De Melo, L. V., & Sawaya, A. C. H. F. (2015). UHPLC–MS quantification of coumarin and chlorogenic acid in extracts of the medicinal plants known as guaco (Mikania glomerata and Mikania laevigata). Revista Brasileira de Farmacognosia, 25(2), 105–110. https://doi.org/10.1016/j.bjp.2015.02.005.

    Article  CAS  Google Scholar 

  • Dos Santos, S. C., Krueger, C. L., Steil, A. A., Kreuger, M. R., Biavatti, M. W., & Wisniewski Junior, A. (2006). LC characterisation of guaco medicinal extracts, Mikania laevigata and M. glomerata, and their effects on allergic pneumonitis. Planta Medicinal, 72(8), 679–684. https://doi.org/10.1055/s-2006-931577.

    Article  CAS  Google Scholar 

  • Figueiredo, A.C., Barroso, J.G., Pedro, L.G. (2007). Plantas Aromáticas e Medicinais. Factores que afectam a produção. Potencialidades e Aplicações das Plantas Aromáticas e Medicinais. Thesis-University of Lisboa, pp. 1–18.

  • Kainulainen, P., Oksanen, P., Palomäki, V., Holopainen, J. K., & Holopainenet, T. (1992). Effect of drought and waterlogging stress on needle monoterpenes of Picea abies. Canadian Journal of Botany, 70(8), 1613–1616. https://doi.org/10.1139/b92-203.

    Article  CAS  Google Scholar 

  • Leite, M. G. R., Souza, C. L., Silva, M. A. M., Moreira, L. K. A., Matos, F. J. A., & Viana, G. S. B. (1993). Estudo farmacológico comparativo de Mikania glomerata Spreng. (guaco), Justicia pectoralis Jacq (anador) e Torresea cearensis (cumaru). Revista Brasileira de Farmácia, 74(1), 12–15.

    Google Scholar 

  • Lima, H. R. P., Kaplan, M. A. C., & Cruz, A. V. M. (2003). Influência dos fatores abióticos na produção e variabilidade de terpenóides em plantas. Floresta e Ambiente, 10(2), 71–77.

    Google Scholar 

  • Lopes, N. P., Kato, M. J., Andrade, E. H. A. A., Maia, J. G. S., & Yoshida, M. (1997). Circadian and seasonal variation in the essential oil from Virola surinamensis leaves. Phytochemistry, 46(4), 689–693. https://doi.org/10.1016/S0031-9422(97)00324-5.

    Article  CAS  Google Scholar 

  • Lorenzi, H., & Matos, F. J. D. A. (2008). Plantas medicinais no Brasil: nativas e exóticas (2nd ed.). Nova Odessa: Instituto Plantarum.

    Google Scholar 

  • Meira, M. R., Martins, E. R., & Manganotti, S. A. (2012). Crescimento, produção de fitomassa e teor de óleo essencial de melissa (Melissa officinalis L.) sob diferentes níveis de sombreamento. Revista Brasileira de Plantas Medicinais, 14(2), 352–357. https://doi.org/10.1590/s1516-05722012000200015.

    Article  Google Scholar 

  • Milborrow, B. V. (2001). The pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis. Journal of Experimental Botany, 52(359), 1145–1164. https://doi.org/10.1093/jexbot/52.359.1145.

    Article  CAS  PubMed  Google Scholar 

  • Morais, L. A. S. (2009). Influência dos fatores abióticos na composição química dos óleos essenciais. Horticultura Brasileira, 27(2), 4050–4063.

    Google Scholar 

  • Nogués, I., Muzzini, V., Loreto, F., & Bustamante, M. A. (2015). Drought and soil amendment effects on monoterpene emission in rosemary plants. Science of the Total Environment, 538, 768–778. https://doi.org/10.1016/j.scitotenv.2015.08.080.

    Article  CAS  PubMed  Google Scholar 

  • Passari, L. M. Z. G., Scarminio, I. S., & Bruns, R. E. (2014). Experimental designs characterizing seasonal variations and solvent effects on the quantities of coumarin and related metabolites from Mikania laevigata. Analytica Chimica Acta, 821, 89–96. https://doi.org/10.1016/j.aca.2014.03.003.

    Article  CAS  PubMed  Google Scholar 

  • Pavarini, D. P., Pavarini, S. P., Niehue, M., & Lopes, N. P. (2012). Exogenous influences on plant secondary metabolite levels. Animal Feed Science and Technology, 176(1–4), 5–16. https://doi.org/10.1016/j.anifeedsci.2012.07.002.

    Article  CAS  Google Scholar 

  • Pereira, A. M. S., Câmara, F. L. A., Celeghini, R. M. S., Vilegas, J. H. Y., Lanças, F. M., & França, S. C. (2000). Seasonal variation in coumarin content of Mikania glomerata. Journal of Herbs, Spices e Medicinal Plants, 7(2), 1–10. https://doi.org/10.1300/J044v07n02_01.

    Article  Google Scholar 

  • Pinto-Zevallos, D. M., Martins, C. B. C., Pellegrino, A. C., & Zarbin, P. H. G. (2013). Compostos orgânicos voláteis na defesa induzida das plantas contra insetos herbívoros. Química Nova, 36(9), 1395–1405. https://doi.org/10.1590/S0100-40422013000900021.

    Article  CAS  Google Scholar 

  • Salek, R. M., Steinbeck, C., Viant, M. R., Goodacre, R., & Dunn, W. B. (2013). The role of reporting standards for metabolite annotation and identification in metabolomic studies. Gigascience, 2(1), 13. https://doi.org/10.1186/2047-217X-2-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva, F., Satos, R. H. S., Diniz, E. R., Barbosa, L. C. A., Casali, V. W. D., & Lima, R. R. (2003). Teor e composição do óleo essencial de manjericão (Ocimum basilicum L.) em dois horários e duas épocas de colheita. Revista brasileira de plantas medicinais, 6(1), 33–38.

    Google Scholar 

  • SUPELCO-SIGMA, A. solid phase microextraction (SPME). Retrieved October 25, 2017 from http://www.sigmaaldrich.com/analytical-chromatography/sample-preparation/spme.html.

  • Taiz, L., & Zeiger, E. (2013). Fisiologia Vegetal (5th ed.). Porto Alegre: Artmed.

    Google Scholar 

  • Wallaart, E. T., Beekman, A. C., & Quax, W. J. (2000). Seasonal variation of artemisinin and its biosynthetic precursor in plants of Artemisia annua. Planta Médica, 66(1), 57–62. https://doi.org/10.1055/s-2000-11115.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Professor Eberlin, Laboratory ThoMSon for use of the GC–MS equipment; CPQBA, UNICAMP for the plants; and CNPq and CAPES for financial support.

Author information

Authors and Affiliations

Authors

Contributions

VAU performed the plant experiment, data collection and analysis; AS planned and supervised the research. Both authors wrote the manuscript.

Corresponding author

Correspondence to Alexandra Christine Helena Frankland Sawaya.

Ethics declarations

Conflict of interest

The authors confirm that there are no conflicts of interest, no human or animal participants were involved in this study and all financial support has been declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 551 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueno, V.A., Sawaya, A.C.H.F. Influence of environmental factors on the volatile composition of two Brazilian medicinal plants: Mikania laevigata and Mikania glomerata. Metabolomics 15, 91 (2019). https://doi.org/10.1007/s11306-019-1546-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-019-1546-x

Keywords

Navigation