Impact of different elicitors on grapevine leaf metabolism monitored by 1H NMR spectroscopy

Abstract

Introduction

Grapevine protection is an important issue in viticulture. To reduce pesticide use, sustainable disease control strategies are proposed, including a promising alternative method based on the elicitor-triggered stimulation of the grapevine natural defense responses. However, detailed investigations are necessary to characterize the impact of such defense induction on the primary metabolism.

Objectives

Our aim was to use a metabolomics approach to assess the impact on grapevine of different elicitors dependent on the salicylic acid (SA) and/or jasmonic acid (JA) pathway. For this purpose, leaves of grapevine foliar cuttings were treated with methyl jasmonate, acibenzolar-S-methyl or phosphonates.

Methods

According to the elicitor, common and discriminating metabolites were elucidated using 1H NMR measurements and principal component analysis.

Results

A wide range of compounds including carbohydrates, amino acids, organic acids, phenolics and amines were identified. The score plots obtained by combining PC1 versus PC2 and PC1 versus PC3 allowed a clear separation of samples, so metabolite fingerprinting showed an extensive reprogramming of primary metabolic pathways after elicitation.

Conclusion

The methods applied were found to be accurate for the rapid determination and differential characterization of plant samples based on their metabolic composition. These investigations can be very useful because the application of plant defense stimulators is gaining greater importance as an alternative strategy to pesticides in the vineyard.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ali, K., Maltese, F., Figueiredo, A., Rex, M., Fortes, A. M., Zyprian, E., et al. (2012). Alterations in grapevine leaf metabolism upon inoculation with Plasmopara viticola in different time-points. Plant Science, 191–192, 100–107. https://doi.org/10.1016/j.plantsci.2012.04.014.

    CAS  Article  PubMed  Google Scholar 

  2. Armijo, G., Schlechter, R., Agurto, M., Muñoz, D., Nuñez, C., & Arce-Johnson, P. (2016). Grapevine pathogenic microorganisms: Understanding infection strategies and host response scenarios. Frontiers in Plant Science, 7, 382. https://doi.org/10.3389/fpls.2016.00382.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Beckers, G. J. M., & Spoel, S. H. (2006). Fine-tuning plant defence signalling: salicylate versus jasmonate. Plant Biology, 8(1), 1–10. https://doi.org/10.1055/s-2005-872705.

    CAS  Article  PubMed  Google Scholar 

  4. Belhadj, A., Saigne, C., Telef, N., Cluzet, S., Bouscaut, J., Corio-Costet, M. F., et al. (2006). Methyl jasmonate induces defense responses in grapevine and triggers protection against Erysiphe necator. Journal of Agricultural and Food Chemistry, 54(24), 9119–9125. https://doi.org/10.1021/jf0618022.

    CAS  Article  PubMed  Google Scholar 

  5. Bellée, A., Cluzet, S., Dufour, M. C., Mérillon, J. M., & Corio-Costet, M. F. (2018). Comparison of the impact of two molecules on plant defense and on efficacy against Botrytis cinerea in the vineyard: A plant defense inducer (Benzothiadiazole) and a fungicide (Pyrimethanil). Journal of Agricultural and Food Chemistry, 66(13), 3338–3350. https://doi.org/10.1021/acs.jafc.7b05725.

    CAS  Article  PubMed  Google Scholar 

  6. Berkowitz, O., Jost, R., Kollehn, D. O., Fenske, R., Finnegan, P. M., O'Brien, P. A., et al. (2013). Acclimation responses of Arabidopsis thaliana to sustained phosphite treatments. Journal of Experimental Botany, 64(6), 1731–1743. https://doi.org/10.1093/jxb/ert037.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Bolton, M. D. (2009). Primary metabolism and plant defense—Fuel for the fire. Molecular Plant-Microbe Interactions, 22(5), 487–497. https://doi.org/10.1094/MPMI-22-5-0487.

    CAS  Article  PubMed  Google Scholar 

  8. Burra, D. D., Berkowitz, O., Hedley, P. E., Morris, J., Resjö, S., Levander, F., et al. (2014). Phosphite-induced changes of the transcriptome and secretome in Solanum tuberosum leading to resistance against Phytophthora infestans. BMC Plant Biology, 14, 254. https://doi.org/10.1186/s12870-014-0254-y.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Cao, H., Bowling, S. A., Gordon, A. S., & Dong, X. (1994). Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell, 6(11), 1583–1592. https://doi.org/10.1105/tpc.6.11.1583.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Caretto, S., Linsalata, V., Colella, G., Mita, G., & Lattanzio, V. (2015). Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. Iriti M., ed. International Journal of Molecular Sciences, 16(11), 26378–26394. https://doi.org/10.3390/ijms161125967.

    CAS  Article  Google Scholar 

  11. Choi, Y. H., Kim, H. K., Linthorst, H. J., Hollander, J. G., Lefeber, A. W., Erkelens, C., et al. (2006). NMR metabolomics to revisit the tobacco mosaic virus infection in Nicotiana tabacum leaves. Journal of Natural Products, 69(5), 742–748. https://doi.org/10.1021/np050535b.

    CAS  Article  PubMed  Google Scholar 

  12. Conrath, U. (2009). Priming of induced plant defense responses. Advances in Botanical Research, 51, 361–395. https://doi.org/10.1016/S0065-2296(09)51009-9.

    CAS  Article  Google Scholar 

  13. Delaunois, B., Farace, G., Jeandet, P., Clément, C., Baillieul, F., Dorey, S., et al. (2014). Elicitors as alternative strategy to pesticides in grapevine? Current knowledge on their mode of action from controlled conditions to vineyard. Environmental Science and Pollution Research, 21(7), 4837–4846. https://doi.org/10.1007/s11356-013-1841-4.

    Article  PubMed  Google Scholar 

  14. Dewhirst, R. A., Clarkson, G. J. J., Rothwell, S. D., & Fry, S. C. (2017). Novel insights into ascorbate retention and degradation during the washing and post-harvest storage of spinach and other salad leaves. Food Chemistry, 233, 237–246. https://doi.org/10.1016/j.foodchem.2017.04.082.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Dietrich, R., Ploss, K., & Heil, M. (2005). Growth responses and fitness costs after induction of pathogen resistance depend on environmental conditions. Plant, Cell and Environment, 28, 211–222. https://doi.org/10.1111/j.1365-3040.2004.01265.x.

    CAS  Article  Google Scholar 

  16. Dufour, M. C., Lambert, C., Bouscaut, J., Mérillon, J. M., & Corio-Costet, M. F. (2013). Benzothiadiazole-primed defence responses and enhanced differential expression of defence genes in Vitis vinifera infected with biotrophic pathogens Erysiphe necator and Plasmopara viticola: Elicitation and grapevine responses to mildews. Plant Pathology, 62(2), 370–382. https://doi.org/10.1111/j.1365-3059.2012.02628.x.

    CAS  Article  Google Scholar 

  17. Eikemo, H., Stensvand, A., & Tronsmo, A. M. (2003). Induced resistance as a possible means to control diseases of strawberry caused by Phytophthora spp. Plant Disease, 87(4), 345–350. https://doi.org/10.1094/PDIS.2003.87.4.345.

    CAS  Article  PubMed  Google Scholar 

  18. Eshraghi, L., Anderson, J., Aryamanesh, N., Shearer, B., McComb, J., Hardy, G. E., et al. (2011). Phosphite primed defence responses and enhanced expression of defence genes in Arabidopsis thaliana infected with Phytophthora cinnamomi. Plant Pathology, 60(6), 1086–1095. https://doi.org/10.1111/j.1365-3059.2011.02471.x.

    CAS  Article  Google Scholar 

  19. Figueiredo, A., Fortes, A. M., Ferreira, S., Sebastiana, M., Choi, Y. H., Sousa, L., et al. (2008). Transcriptional and metabolic profiling of grape (Vitis vinifera L.) leaves unravel possible innate resistance against pathogenic fungi. Journal of Experimental Botany, 59 (12), 3371–3381. https://doi.org/10.1093/jxb/ern187.

    CAS  Article  Google Scholar 

  20. Figueiredo, A., Monteiro, F., & Sebastiana, M. (2015). First clues on a jasmonic acid role in grapevine resistance against the biotrophic fungus Plasmopara viticola. European Journal of Plant Pathology, 142(3), 645–652.https://doi.org/10.1007/s10658-015-0634-7.

    CAS  Article  Google Scholar 

  21. Gӧrlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K. H., et al. (1996). Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell, 8(4), 629–643. https://doi.org/10.1105/tpc.8.4.629.

    Article  Google Scholar 

  22. Hamzehzarghani, H., Kushalappa, A. C., Dion, Y., Rioux, S., Comeau, A., Yaylayan, V., et al. (2005). Metabolic profiling and factor analysis to discriminate quantitative resistance in wheat cultivars against fusarium head blight. Physiological and Molecular Plant Pathology, 66(4), 119–133. https://doi.org/10.1016/j.pmpp.2005.05.005.

    CAS  Article  Google Scholar 

  23. Hardy, G. E., St, J., Barrett, S., & Shearer, B. L. (2001). The future of phosphite as a fungicide to control the soilborne plant pathogen Phytophthora cinnamomi in natural ecosystems. Australasian Plant Pathology, 30(2), 133–139. https://doi.org/10.1071/AP01012.

    Article  Google Scholar 

  24. Heil, M. (2002). Ecological costs of induced resistance. Current Opinion in Plant Biology, 5(4), 345–350.

    Article  Google Scholar 

  25. Hien Dao, T. T., Puig, R. C., Kim, H. K., Erkelens, C., Lefeber, A.W., Linthorst, H. J., et al. (2009). Effect of benzothiadiazole on the metabolome of Arabidopsis thaliana. Plant Physiology and Biochemistry, 47(2), 146–152.https://doi.org/10.1016/j.plaphy.2008.10.001.

    CAS  Article  Google Scholar 

  26. Hong, Y. S., Martinez, A., Liger-Belair, G., Jeandet, P., Nuzillard, J. M., & Cilindre, C. (2012). Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries. Journal of Experimental Botany, 63(16), 5773–5785. https://doi.org/10.1093/jxb/ers228.

    CAS  Article  Google Scholar 

  27. Iriti, M., Rossoni, M., Borgo, M., Ferrara, L., & Faoro, F. (2005). Induction of resistance to gray mold with benzothiadiazole modifies amino acid profile and increases proanthocyanidins in grape: primary versus secondary metabolism. Journal of Agricultural and Food Chemistry, 53(23), 9133–9139. https://doi.org/10.1021/jf050853g.

    CAS  Article  PubMed  Google Scholar 

  28. Kim, H. K., Choi, Y. H., & Verpoorte, R. (2010). NMR-based metabolomic analysis of plants. Nature Protocols, 5(3), 536–549. https://doi.org/10.1038/nprot.2009.237.

    CAS  Article  PubMed  Google Scholar 

  29. Krzyzaniak, Y., Negrel, J., Lemaitre-Guillier, C., Clément, G., Mouille, G., Klinguer, A., Trouvelot, S., Héloir, M. C., & Adrian M. (2018). Combined enzymatic and metabolic analysis of grapevine cell responses to elicitors. Plant Physiology and Biochemistry, 123, 141-148. https://doi.org/10.1016/j.plaphy.2017.12.013.

    CAS  Article  Google Scholar 

  30. Lawton, K. A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., et al. (1996). Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant Journal, 10(1), 71–82. https://doi.org/10.1046/j.1365-313X.1996.10010071.x.

    CAS  Article  PubMed  Google Scholar 

  31. Liang, Y. S., Choi, Y. H., Kim, H. K., Linthorst, H. J., & Verpoorte, R. (2006). Metabolomic analysis of methyl jasmonate treated Brassica rapa leaves by 2-dimensional NMR spectroscopy. Phytochemistry, 67(22), 2503–2511. https://doi.org/10.1016/j.phytochem.2006.08.018.

    CAS  Article  PubMed  Google Scholar 

  32. Lima, M. R., Felgueiras, M. L., Graça, G., Rodrigues, J. E., Barros, A., Gil, A. M., et al. (2010). NMR metabolomics of esca disease-affected Vitis vinifera cv. Alvarinho leaves. Journal of Experimental Botany, 61(14), 4033–4042. https://doi.org/10.1093/jxb/erq214.

    CAS  Article  PubMed  Google Scholar 

  33. Lobato, M. C., Olivieri, F. P., Daleo, G. R., & Andreu, A. B. (2010). Antimicrobial activity of phosphites against different potato pathogens. Journal of Plant Diseases and Protection, 117(3), 102–109.https://doi.org/10.1007/BF03356343.

    CAS  Article  Google Scholar 

  34. Marolleau, B., Gaucher, M., Heintz, C., Degrave, A., Warneys, R., Orain, G., et al. (2017). When a plant resistance inducer leaves the lab for the field: Integrating ASM into routine apple protection practices. Frontiers in Plant Science, 4(8), 1938. https://doi.org/10.3389/fpls.2017.01938.

    Article  Google Scholar 

  35. Massoud, K., Barchietto, T., Le Rudulier, T., Pallandre, L., Didierlaurent, L., Garmier, M., et al. (2012). Dissecting phosphite-induced priming in Arabidopsis infected with Hyaloperonospora arabidopsidis. Plant Physiology, 159(1), 286–298. https://doi.org/10.1104/pp.112.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Mou, Z., Wang, X., Fu, Z., Dai, Y., Han, C., Ouyang, J., et al. (2002). Silencing of phosphoethanolamine N-methyltransferase results in temperature-sensitive male sterility and salt hypersensivity in Arabidopsis. Plant Cell, 14(9), 2031–2043.

    CAS  Article  Google Scholar 

  37. Nishikawa, F., Kato, M., Hyodo, H., Ikoma, Y., & Suigiura, M. (2003). Ascorbate metabolism in harvested broccoli. Journal of Experimental Botany, 392(54), 2439–2448.

    Article  Google Scholar 

  38. Parvaiz, A., AbassAhanger, M., Pratap Singh, V., Tripathi, D. K., Alam, P., & Alyemeni, M. N. (2018). Plant metabolites and regulation under environmental stress. Cambridge: Academic Press.

  39. Pieterse, C. M. J., Van der Does, D., Zamioudis, C., Leon-Reyes, A., & Van Wees, S. C. M. (2012). Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology, 28, 489–521. https://doi.org/10.1146/annurev-cellbio-092910-154055.

    CAS  Article  PubMed  Google Scholar 

  40. Prezelj, N., Covington, E., Roitsch, T., Gruden, K., Fragner, L., Weckwerth, W., et al. (2016). Metabolic consequences of infection of grapevine (Vitis vinifera L.) cv. "Modrafrankinja" with Flavescence Dorée phytoplasma. Frontiers in Plant Science, 7, 711. https://doi.org/10.3389/fpls.2016.00711.

  41. Repka, V., Fischerová, I., & Silhárová, K. (2004). Methyljasmonate is a potent elicitor of multiple defense responses in grapevine leaves and cell-suspension cultures. Biologica Plantarum, 48(2), 273–283. https://doi.org/10.1023/B:BIOP.0000033456.27521.e5.

    CAS  Article  Google Scholar 

  42. Robert-Seilaniantz, A., Grant, M., & Jones, J. D. (2011). Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annual Review of Phytopathology, 49, 317–343. https://doi.org/10.1146/annurev-phyto-073009-114447.

    CAS  Article  PubMed  Google Scholar 

  43. Terry, L. A., & Joyce, D. C. (2000). Suppression of grey mold on strawberry fruit with the chemical plant activator acibenzolar. Pest Management Science, 56(11), 989–992. https://doi.org/10.1002/1526-4998(200011)56:11%3c989:AID-PS229%3e3.0.CO;2-A.

  44. Zhang, H., Murzello, C., Sun, Y., Kim, M. S., Xie, X., Jeter, R. M., et al. (2010). Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Molecular Plant-Microbe Interactions, 23(8), 1097–1104. https://doi.org/10.1094/MPMI-23-8-1097.

    CAS  Article  PubMed  Google Scholar 

  45. Zulak, K. G., Weljie, A. M., Vogel, H. J., Facchini, P. J. (2008) Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures. BMC Plant Biology, 8, 5. https://doi.org/10.1186/1471-2229-8-5.

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Sébastien Gambier for taking care of the plants, and Annick Moing and Catherine Deborde for their pertinent advice on the NMR protocol extraction method. The work was supported by the Bordeaux Metabolome Facility and MetaboHUB (ANR-11-INBS-0010 project). We thank the French Government and the French Embassy in Poland for their financial support.

Author information

Affiliations

Authors

Contributions

SC and MFCC conceived and designed the research. AlB, AnB, SC and MFCC conducted the experiments. AlB, GDC, LG, ILM and TR performed the metabolomics study and data analysis. AlB, JMM, AS and SC wrote and/or revised the manuscript. All authors read and accepted the final manuscript.

Corresponding author

Correspondence to Stéphanie Cluzet.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burdziej, A., Da Costa, G., Gougeon, L. et al. Impact of different elicitors on grapevine leaf metabolism monitored by 1H NMR spectroscopy. Metabolomics 15, 67 (2019). https://doi.org/10.1007/s11306-019-1530-5

Download citation

Keywords

  • Metabolomic analysis
  • Vitis vinifera
  • MeJA
  • ASM
  • Phosphonates
  • Nuclear magnetic resonance spectroscopy