Exposure to disinfection byproducts and risk of type 2 diabetes: a nested case–control study in the HUNT and Lifelines cohorts

Abstract

Introduction

Environmental chemicals acting as metabolic disruptors have been implicated with diabetogenesis, but evidence is weak among short-lived chemicals, such as disinfection byproducts (trihalomethanes, THM composed of chloroform, TCM and brominated trihalomethanes, BrTHM).

Objectives

We assessed whether THM were associated with type 2 diabetes (T2D) and we explored alterations in metabolic profiles due to THM exposures or T2D status.

Methods

A prospective 1:1 matched case–control study (n = 430) and a cross-sectional 1:1 matched case–control study (n = 362) nested within the HUNT cohort (Norway) and the Lifelines cohort (Netherlands), respectively, were set up. Urinary biomarkers of THM exposure and mass spectrometry-based serum metabolomics were measured. Associations between THM, clinical markers, metabolites and disease status were evaluated using logistic regressions with Least Absolute Shrinkage and Selection Operator procedure.

Results

Low median THM exposures (ng/g, IQR) were measured in both cohorts (cases and controls of HUNT and Lifelines, respectively, 193 (76, 470), 208 (77, 502) and 292 (162, 595), 342 (180, 602). Neither BrTHM (OR = 0.87; 95% CI: 0.67, 1.11 | OR = 1.09; 95% CI: 0.73, 1.61), nor TCM (OR = 1.03; 95% CI: 0.88, 1.2 | OR = 1.03; 95% CI: 0.79, 1.35) were associated with incident or prevalent T2D, respectively. Metabolomics showed 48 metabolites associated with incident T2D after adjusting for sex, age and BMI, whereas a total of 244 metabolites were associated with prevalent T2D. A total of 34 metabolites were associated with the progression of T2D. In data driven logistic regression, novel biomarkers, such as cinnamoylglycine or 1-methylurate, being protective of T2D were identified. The incident T2D risk prediction model (HUNT) predicted well incident Lifelines cases (AUC = 0.845; 95% CI: 0.72, 0.97).

Conclusion

Such exposome-based approaches in cohort-nested studies are warranted to better understand the environmental origins of diabetogenesis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

T2D:

Type 2 diabetes

ALT:

Alanine-aminotransferase

BDCM:

Bromodicholormethane

BrTHM:

Brominated trihalomethanes

DBCM:

Dibromochloromethane

FINDRISC:

Finnish diabetes risk score

HDL:

High density lipoprotein

LASSO:

Least absolute shrinkage and selection operator

LOD:

Limit of detection

LOQ:

Limit of quantification

TBM:

Bromoform

TCM:

Chloroform

THM:

Trihalomethanes

References

  1. Andra, S. S., Charisiadis, P., & Makris, K. C. (2014). Obesity-mediated association between exposure to brominated trihalomethanes and type II diabetes mellitus: An exploratory analysis. The Science of the Total Environment, 485–486, 340–347. https://doi.org/10.1016/j.scitotenv.2014.03.075.

    CAS  PubMed  Article  Google Scholar 

  2. Andrianou, X. D., Charisiadis, P., Andra, S. S., & Makris, K. C. (2014). Spatial and seasonal variability of urinary trihalomethanes concentrations in urban settings. Environmental Research, 135, 289–295. https://doi.org/10.1016/j.envres.2014.09.015.

    CAS  PubMed  Article  Google Scholar 

  3. Aylward, L. L., Hays, S. M., & Zidek, A. (2017). Variation in urinary spot sample, 24 h samples, and longer-term average urinary concentrations of short-lived environmental chemicals: implications for exposure assessment and reverse dosimetry. Journal of Exposure Science & Environmental Epidemiology, 27(6), 582–590. https://doi.org/10.1038/jes.2016.54.

    CAS  Article  Google Scholar 

  4. Barker, H. A. (1981). Amino acid degradation by anaerobic bacteria. Annual Review of Biochemistry, 50(1), 23–40. https://doi.org/10.1146/annurev.bi.50.070181.000323.

    CAS  PubMed  Article  Google Scholar 

  5. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological). https://doi.org/10.2307/2346101.

    Article  Google Scholar 

  6. Burch, J. B., Everson, T. M., Seth, R. K., Wirth, M. D., & Chatterjee, S. (2015). Trihalomethane exposure and biomonitoring for the liver injury indicator, alanine aminotransferase, in the United States population (NHANES 1999–2006). Science of the Total Environment, 521, 226–234. https://doi.org/10.1016/j.scitotenv.2015.03.050.

    CAS  PubMed  Article  Google Scholar 

  7. Charisiadis, P., Andra, S. S., Makris, K. C., Christodoulou, M., Christophi, C. A., Kargaki, S., et al. (2014). Household cleaning activities as noningestion exposure determinants of urinary trihalomethanes. Environmental Science and Technology, 48(1), 770–780. https://doi.org/10.1021/es404220z.

    CAS  PubMed  Article  Google Scholar 

  8. Charisiadis, P., & Makris, K. C. (2018). Cohort-friendly protocol for a sensitive and fast method for trihalomethanes in urine using gas chromatography—Triple quadrupole mass spectrometry. Journal of Chromatography B, 1072, 336–340. https://doi.org/10.1016/J.JCHROMB.2017.11.045.

    CAS  Article  Google Scholar 

  9. Cobb, J., Eckhart, A., Perichon, R., Wulff, J., Mitchell, M., Adam, K.-P., et al. (2015). A novel test for IGT utilizing metabolite markers of glucose tolerance. Journal of Diabetes Science and Technology, 9(1), 69–76. https://doi.org/10.1177/1932296814553622.

    CAS  PubMed  Article  Google Scholar 

  10. Evans, A., Bridgewater, B., Liu, Q., Mitchell, M., Robinson, R., Dai, H., et al. (2014). High resolution mass spectrometry improves data quantity and quality as compared to unit mass resolution mass spectrometry in high-throughput profiling metabolomics. Metabolomics, 04(02), 132. https://doi.org/10.4172/2153-0769.1000132.

    Article  Google Scholar 

  11. Fabris, R., Chow, C. W. K., Drikas, M., & Eikebrokk, B. (2008). Comparison of NOM character in selected Australian and Norwegian drinking waters. Water Research, 42(15), 4188–4196. https://doi.org/10.1016/J.WATRES.2008.06.023.

    CAS  PubMed  Article  Google Scholar 

  12. Fleiner, H. F., Bjøro, T., Midthjell, K., Grill, V., & Åsvold, B. O. (2016). Prevalence of Thyroid dysfunction in autoimmune and type 2 diabetes: The population-based HUNT Study in Norway. The Journal of Clinical Endocrinology & Metabolism, 101(2), 669–677. https://doi.org/10.1210/jc.2015-3235.

    CAS  Article  Google Scholar 

  13. Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1–22. https://doi.org/10.18637/jss.v033.i01.

    PubMed  PubMed Central  Article  Google Scholar 

  14. Friedrich, N., Budde, K., Suhre, K., Völker, U., John, U., Felix, S. B., et al. (2015). Sex differences in urine metabolites related with risk of diabetes using NMR spectroscopy: Results of the study of health in pomerania, Metabolomics, 11, 1405–1415. N. Friedrich, Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Str. NK, Greifswald 17475, Germany: Springer New York LLC (E-mail: journals@springer-sbm.com). https://doi.org/10.1007/s11306-015-0795-6.

    CAS  Article  Google Scholar 

  15. Friedrich, N., Skaaby, T., Pietzner, M., Budde, K., Thuesen, B. H., Nauck, M., et al. (2017). Identification of urine metabolites associated with 5-year changes in biomarkers of glucose homoeostasis. Diabetes & Metabolism. https://doi.org/10.1016/j.diabet.2017.05.007.

    Article  Google Scholar 

  16. Gall, W. E., Beebe, K., Lawton, K. A., Adam, K.-P., Mitchell, M. W., Nakhle, P. J., et al. (2010). alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS ONE, 5(5), e10883. https://doi.org/10.1371/journal.pone.0010883.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Gängler, S., Charisiadis, P., Seth, R., Chatterjee, S., & Makris, K. C. (2018). Time of the day dictates the variability of biomarkers of exposure to disinfection byproducts. Environment International, 112, 33–40. https://doi.org/10.1016/j.envint.2017.12.013.

    CAS  PubMed  Article  Google Scholar 

  18. Gängler, S., Makris, K. C., Bouhamra, W., & Dockery, D. W. (2017). Coupling external with internal exposure metrics of trihalomethanes in young females from Kuwait and Cyprus. Journal of Exposure Science & Environmental Epidemiology, 00(July), 1–7. https://doi.org/10.1038/jes.2017.27.

    CAS  Article  Google Scholar 

  19. Garg, R. C. (2016). Fenugreek. In R. C. Gupta (Ed.), Nutraceuticals (pp. 599–617). Amsterdam: Elsevier. https://doi.org/10.1016/b978-0-12-802147-7.00044-9.

    Google Scholar 

  20. GBD 2016 Causes of Death Collaborators*. (2017). Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet, 390, 1151–1210. https://doi.org/10.1016/S0140-6736(17)32152-9.

    Article  Google Scholar 

  21. Grosso, G., Godos, J., Galvano, F., & Giovannucci, E. L. (2017). Coffee, caffeine, and health outcomes: An umbrella review. Annual Review of Nutrition, 37(1), 131–156. https://doi.org/10.1146/annurev-nutr-071816-064941.

    CAS  PubMed  Article  Google Scholar 

  22. Guasch-Ferré, M., Hruby, A., Toledo, E. E., Clish, C. B., Martínez-González, M. A., Salas-Salvadó, J., et al. (2016). Metabolomics in prediabetes and diabetes: A systematic review and meta-analysis. Diabetes Care, 39(5), 833–846. https://doi.org/10.2337/dc15-2251.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Haddad, S., Tardif, G.-C., & Tardif, R. (2006). Development of physiologically based toxicokinetic models for improving the human indoor exposure assessment to water contaminants: Trichloroethylene and trihalomethanes. Journal of Toxicology and Environmental Health: Part A, 69(23), 2095–2136. https://doi.org/10.1080/15287390600631789.

    CAS  Article  Google Scholar 

  24. Harrell, F. E. (2016). Harrell Miscellaneous (Hmisc); Package “Hmisc.”

  25. Helsel, D. R. (2006). Fabricating data: How substituting values for nondetects can ruin results, and what can be done about it. Chemosphere, 65(11), 2434–2439. https://doi.org/10.1016/j.chemosphere.2006.04.051.

    CAS  PubMed  Article  Google Scholar 

  26. Ioannou, S., Andrianou, X. D., Charisiadis, P., & Makris, K. C. (2017). Biomarkers of end of shift exposure to disinfection byproducts in nurses. Journal of Environmental Sciences, 58, 217–223. https://doi.org/10.1016/J.JES.2017.06.031.

    Article  Google Scholar 

  27. Kaprio, J., Tuomilehto, J., Koskenvuo, M., Romanov, K., Reunanen, A., Eriksson, J., et al. (1992). Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia, 35(11), 1060–1067.

    CAS  PubMed  Article  Google Scholar 

  28. Kim, W. J., & Park, C.-Y. (2013). 1,5-Anhydroglucitol in diabetes mellitus. Endocrine, 43(1), 33–40. https://doi.org/10.1007/s12020-012-9760-6.

    CAS  PubMed  Article  Google Scholar 

  29. Klijs, B., Scholtens, S., Mandemakers, J. J., Snieder, H., Stolk, R. P., & Smidt, N. (2015). Representativeness of the LifeLines Cohort Study. PLoS ONE, 10(9), e0137203. https://doi.org/10.1371/journal.pone.0137203.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Kraus, D., Yang, Q., Kong, D., Banks, A. S., Zhang, L., Rodgers, J. T., et al. (2014). Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature, 508(7495), 258–262. https://doi.org/10.1038/nature13198.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Krokstad, S., Langhammer, A., Hveem, K., Holmen, T. L., Midthjell, K., Stene, T. R., et al. (2013). Cohort profile: The HUNT study, Norway. International Journal of Epidemiology, 42(4), 968–977. https://doi.org/10.1093/ije/dys095.

    CAS  PubMed  Article  Google Scholar 

  32. Le Cao, K.-A., Rohart, F., Gonzalez, I., Dejean, S., Key Contributors, Gautier, B., et al. (2017). mixOmics: Omics Data Integration Project.

  33. Lee, L. (2017). NADA: Nondetects and Data Analysis for Environmental Data.

  34. Lee, S. H., Kim, S. O., Lee, H. D., & Chung, B. C. (1998). Estrogens and polyamines in breast cancer: Their profiles and values in disease staging. Cancer Letters, 133(1), 47–56.

    CAS  PubMed  Article  Google Scholar 

  35. Lee, S., Zhang, C., Kilicarslan, M., Piening, B. D., Bjornson, E., Hallström, B. M., et al. (2016a). Integrated network analysis reveals an association between plasma mannose levels and insulin resistance. Cell Metabolism, 24(1), 172–184. https://doi.org/10.1016/j.cmet.2016.05.026.

    CAS  PubMed  Article  Google Scholar 

  36. Lee, S., Zhang, C., Serlie, M. J., Boren, J., Mardinoglu, A., Kilicarslan, M., et al. (2016b). Integrated network analysis reveals an association between plasma mannose levels and insulin resistance cell metabolism resource. Cell Metabolism, 24, 172–184. https://doi.org/10.1016/j.cmet.2016.05.026.

    CAS  PubMed  Article  Google Scholar 

  37. Li, J. H., Wang, Z. H., Zhu, X. J., Deng, Z. H., Cai, C. X., Qiu, L. Q., et al. (2015). Health effects from swimming training in chlorinated pools and the corresponding metabolic stress pathways. PLoS ONE, 10(3), e0119241. https://doi.org/10.1371/journal.pone.0119241.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Lindström, J., & Tuomilehto, J. (2003). The diabetes risk score: A practical tool to predict type 2 diabetes risk. Diabetes Care, 26(3), 725–731.

    PubMed  Article  Google Scholar 

  39. Liu, J., Semiz, S., van der Lee, S. J., van der Spek, A., Verhoeven, A., van Klinken, J. B., et al. (2017). Metabolomics based markers predict type 2 diabetes in a 14-year follow-up study. Metabolomics, 13(9), 104. https://doi.org/10.1007/s11306-017-1239-2.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Lustgarten, M. S., Price, L. L., Chalé, A., & Fielding, R. A. (2014). Metabolites related to gut bacterial metabolism, peroxisome proliferator-activated receptor-alpha activation, and insulin sensitivity are associated with physical function in functionally-limited older adults. Aging Cell, 13(5), 918–925. https://doi.org/10.1111/acel.12251.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Makris, K. C., Andrianou, X. D., Charisiadis, P., Burch, J. B., Seth, R. K., Ioannou, A., et al. (2016). Association between exposures to brominated trihalomethanes, hepatic injury and type II diabetes mellitus. Environment International, 92, 486–493. https://doi.org/10.1016/j.envint.2016.04.012.

    CAS  PubMed  Article  Google Scholar 

  42. Martin, E., Gonzalez-Horta, C., Rager, J., Bailey, K. A., Sanchez-Ramirez, B., Ballinas-Casarrubias, L., et al. (2015). Metabolomic characteristics of arsenic-associated diabetes in a prospective cohort in Chihuahua, Mexico. Toxicological Sciences, 144(2), 338–346. https://doi.org/10.1093/toxsci/kfu318.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Menni, C., Fauman, E., Erte, I., Perry, J. R. B. B., Kastenmuller, G., Shin, S.-Y. Y., et al. (2013). Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes, 62(12), 4270–4276. https://doi.org/10.2337/db13-0570.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Michalik, L., Auwerx, J., Berger, J. P., Chatterjee, V. K., Glass, C. K., Gonzalez, F. J., et al. (2006). International union of pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacological Reviews, 58(4), 726–741.

    CAS  PubMed  Article  Google Scholar 

  45. Midthjell, K., Lee, C. M. Y., Langhammer, A., Krokstad, S., Holmen, T. L., Hveem, K., et al. (2013). Trends in overweight and obesity over 22 years in a large adult population: The HUNT Study, Norway. Clinical Obesity, 3(1–2), 12–20. https://doi.org/10.1111/cob.12009.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Miyake, T., Kumagi, T., Hirooka, M., Koizumi, M., Furukawa, S., Ueda, T., et al. (2012). Metabolic markers and ALT cutoff level for diagnosing nonalcoholic fatty liver disease: A community-based cross-sectional study. Journal of Gastroenterology, 47(6), 696–703. https://doi.org/10.1007/s00535-012-0534-y.

    CAS  PubMed  Article  Google Scholar 

  47. Mook-Kanamori, D. O., Selim, M. M. E.-D., Takiddin, A. H., Al-Homsi, H., Al-Mahmoud, K. A. S., Al-Obaidli, A., et al. (2014). 1,5-Anhydroglucitol in saliva is a noninvasive marker of short-term glycemic control. Journal of Clinical Endocrinology and Metabolism, 99(3), E479–E483. https://doi.org/10.1210/jc.2013-3596.

    CAS  PubMed  Article  Google Scholar 

  48. Murray, K. E., Shaw, K. J., Adams, R. F., & Conway, P. L. (1993). Presence of N-acyl and acetoxy derivatives of putrescine and cadaverine in the human gut. Gut, 34(4), 489–493.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Nano, J., Muka, T., Ligthart, S., Hofman, A., Darwish Murad, S., LA Janssen, H., et al. (2017). Gamma-glutamyltransferase levels, prediabetes and type 2 diabetes: A Mendelian randomization study. International Journal of Epidemiology, 46(5), 1400–1409. https://doi.org/10.1093/ije/dyx006.

    PubMed  Article  Google Scholar 

  50. Neafsey, P., Ginsberg, G., Hattis, D., Johns, D. O., Guyton, K. Z., & Sonawane, B. (2009). Genetic polymorphism in CYP2E1: Population distribution of CYP2E1 activity. Journal of Toxicology and Environmental Health, Part B, Critical reviews, 12(5–6), 362–388. https://doi.org/10.1080/10937400903158359.

    CAS  PubMed  Article  Google Scholar 

  51. Padberg, I., Peter, E., Gonzalez-Maldonado, S., Witt, H., Mueller, M., Weis, T., et al. (2014). A new metabolomic signature in type-2 diabetes mellitus and its pathophysiology. PLoS ONE, 9(1), e85082. https://doi.org/10.1371/journal.pone.0085082.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Patel, C. J., Bhattacharya, J., Butte, A. J., Zeggini, E., & Freathy, R. (2010). An Environment-Wide Association Study (EWAS) on type 2 diabetes mellitus. PLoS ONE, 5(5), e10746. https://doi.org/10.1371/journal.pone.0010746.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Peddinti, G., Cobb, J., Yengo, L., Froguel, P., Kravic, J., Balkau, B., et al. (2017). Early metabolic markers identify potential targets for the prevention of type 2 diabetes. Diabetologia. https://doi.org/10.1007/s00125-017-4325-0.

    PubMed  PubMed Central  Article  Google Scholar 

  54. Perichon, R., Bell, L. N., Wulff, J., Nguyen, U. T., & Watkins, S. M. (2017). Patent: 20170370954, “Biomarkers for Fatty Liver Disease and Methods Using the Same.” USA.

  55. Playdon, M. C., Sampson, J. N., Cross, A. J., Sinha, R., Guertin, K. A., Moy, K. A., et al. (2016). Comparing metabolite profiles of habitual diet in serum and urine. The American Journal of Clinical Nutrition, 104(3), 776–789. https://doi.org/10.3945/ajcn.116.135301.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. R Core Team. (2015). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  57. Rappaport, S. M. (2016). Genetic factors are not the major causes of chronic diseases. PLoS ONE, 11(4), e0154387. https://doi.org/10.1371/journal.pone.0154387.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., et al. (2011). pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12(1), 77. https://doi.org/10.1186/1471-2105-12-77.

    PubMed  PubMed Central  Article  Google Scholar 

  59. Salas, L. A., Bustamante, M., Gonzalez, J. R., Gracia-Lavedan, E., Moreno, V., Kogevinas, M., et al. (2015). DNA methylation levels and long-term trihalomethane exposure in drinking water: An epigenome-wide association study. Epigenetics, 10(7), 650–661. https://doi.org/10.1080/15592294.2015.1057672.

    PubMed  PubMed Central  Article  Google Scholar 

  60. Scholtens, S., Smidt, N., Swertz, M. A., Bakker, S. J., Dotinga, A., Vonk, J. M., et al. (2015). Cohort Profile: LifeLines, a three-generation cohort study and biobank. International Journal of Epidemiology, 44(4), 1172–1180. https://doi.org/10.1093/ije/dyu229.

    PubMed  Article  Google Scholar 

  61. Slagter, S. N., van Vliet-Ostaptchouk, J. V., van Beek, A. P., Keers, J. C., Lutgers, H. L., van der Klauw, M. M., et al. (2015). Health-related quality of life in relation to obesity grade, type 2 diabetes, metabolic syndrome and inflammation. PLOS ONE, 10(10), e0140599. https://doi.org/10.1371/journal.pone.0140599.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Slagter, S. N., van Waateringe, R. P., van Beek, A. P., van der Klauw, M. M., Wolffenbuttel, B. H. R., & van Vliet-Ostaptchouk, J. V. (2017). Sex, BMI and age differences in metabolic syndrome: The Dutch Lifelines Cohort Study. Endocrine Connections, 6(4), 278–288. https://doi.org/10.1530/EC-17-0011.

    PubMed  PubMed Central  Article  Google Scholar 

  63. Smeets, P. W. M. H., Medema, G. J., & Van Dijk, J. C. (2009). The Dutch secret: How to provide safe drinking water without chlorine in the Netherlands. Drinking Water Engineering and Science, 2, 1–14.

    CAS  Article  Google Scholar 

  64. Stekhoven, D. J., & Bühlmann, P. (2012). Missforest-non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112–118. https://doi.org/10.1093/bioinformatics/btr597.

    CAS  PubMed  Article  Google Scholar 

  65. Suhre, K., Meisinger, C., Döring, A., Altmaier, E., Belcredi, P., Gieger, C., et al. (2010). Metabolic footprint of diabetes: A multiplatform metabolomics study in an epidemiological setting. PLoS ONE, 5(11), e13953. https://doi.org/10.1371/journal.pone.0013953.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45(3), 1–67.

    Article  Google Scholar 

  67. van Veldhoven, K., Keski-Rahkonen, P., Barupal, D. K., Villanueva, C. M., Font-Ribera, L., Scalbert, A., et al. (2018). Effects of exposure to water disinfection by-products in a swimming pool: A metabolome-wide association study. Environment International, 111, 60–70. https://doi.org/10.1016/j.envint.2017.11.017.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Wang, Z., Hall, S. D., Maya, J. F., Li, L., Asghar, A., & Gorski, J. C. (2003). Diabetes mellitus increases the in vivo activity of cytochrome P450 2E1 in humans. British Journal of Clinical Pharmacology, 55(1), 77–85.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Wei, T., & Simko, V. (2016). R package “corrplot”: Visualization of a Correlation Matrix (Version 0.77). Available from https://github.com/taiyun/corrplot.

  70. Wickham, Hadley. (2009). ggplot2: Elegant graphics for data analysis. New York: Springer. ISBN 978-0-387-98140-6.

    Google Scholar 

  71. Wikoff, W. R., Anfora, A. T., Liu, J., Schultz, P. G., Lesley, S. A., Peters, E. C., et al. (2009). Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proceedings of the National Academy of Sciences of the United States of America, 106(10), 3698–3703. https://doi.org/10.1073/pnas.0812874106.

    PubMed  PubMed Central  Article  Google Scholar 

  72. Wild, C. P. (2005). Complementing the genome with an “exposome”: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiology, Biomarkers & Prevention, 14(8), 1847–1850. https://doi.org/10.1158/1055-9965.EPI-05-0456.

    CAS  Article  Google Scholar 

  73. Wild, C. P., Scalbert, A., & Herceg, Z. (2013). Measuring the exposome: A powerful basis for evaluating environmental exposures and cancer risk. Environmental and Molecular Mutagenesis, 54(7), 480–499. https://doi.org/10.1002/em.21777.

    CAS  PubMed  Article  Google Scholar 

  74. Yoshida, K., & Bohn, J. (2015). tableone: Create “Table 1” to Describe Baseline Characteristics.

  75. Yousri, N. A., Mook-Kanamori, D. O., Selim, M. M. E.-D., Takiddin, A. H., Al-Homsi, H., Al-Mahmoud, K. A. S., et al. (2015). A systems view of type 2 diabetes-associated metabolic perturbations in saliva, blood and urine at different timescales of glycaemic control. Diabetologia, 58(8), 1855–1867. https://doi.org/10.1007/s00125-015-3636-2.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Yu, D., Moore, S. C., Matthews, C. E., Xiang, Y.-B., Zhang, X., Gao, Y.-T., et al. (2016). Plasma metabolomic profiles in association with type 2 diabetes risk and prevalence in Chinese adults. Metabolomics, 12(1), 1–11. https://doi.org/10.1007/s11306-015-0890-8.

    CAS  Article  Google Scholar 

  77. Zhen, Y., Krausz, K. W., Chen, C., Idle, J. R., & Gonzalez, F. J. (2007). Metabolomic and genetic analysis of biomarkers for peroxisome proliferator-activated receptor alpha expression and activation. Molecular Endocrinology, 21(9), 2136–2151. https://doi.org/10.1210/me.2007-0150.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

This research was funded by a Biobanking and Biomolecular Resources Research Infrastructure -Large prospective cohort (BBMRI-LPC) grant given to Dr. K.C. Makris. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No 313010 (BBMRI-LPC). We would like to thank the Lifelines Biobank initiative, which has been made possible by funds from FESS (Fonds Economische Structuurversterking), SNN (Samenwerkingsverband Noord Nederland) and REP (Ruimtelijk Economisch Programma). The Lifelines Cohort Study is supported by the Netherlands Organization of Scientific Research NWO (Grant 175.010.2007.006), the Ministry of Economic Affairs, the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the Northern Netherlands Collaboration of Provinces (SNN), The Province of Groningen, University Medical Center Groningen, the University of Groningen, Dutch Kidney Foundation and Dutch Diabetes Research Foundation. We would also like to thank the The Nord-Trøndelag Health Study (The HUNT Study), which is a collaboration between HUNT Research Centre (Faculty of Medicine, Norwegian University of Science and Technology NTNU), Nord-Trøndelag County Council, Central Norway Health Authority, and the Norwegian Institute of Public Health. J.V. van Vliet-Ostaptchouk was supported by a Diabetes Funds Junior Fellowship from the Dutch Diabetes Research Foundation (Project No. 2013.81.1673).

Author information

Affiliations

Authors

Contributions

KCM conceived and designed the study. KCM, EPS, JvVO and JB acquired the cohort data. SG and MW, AA and JA acquired biomarker and metabolomics data. SG and KCM undertook the statistical analyses. All authors were involved in data interpretation. SG wrote the initial draft of the manuscript. These drafts were revised for important scientific content by all authors. All authors gave final approval of the version to be published. KCM is the guarantor of this work.

Corresponding author

Correspondence to Konstantinos C. Makris.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Human and animal rights

The respective bioethics committees of the University Medical Center Groningen (UMCG), the Netherlands, and the Regional Committee for Ethics in Medical Research in Norway approved this study.

Informed consent

Informed consent was obtained for all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 788 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gängler, S., Waldenberger, M., Artati, A. et al. Exposure to disinfection byproducts and risk of type 2 diabetes: a nested case–control study in the HUNT and Lifelines cohorts. Metabolomics 15, 60 (2019). https://doi.org/10.1007/s11306-019-1519-0

Download citation

Keywords

  • Type 2 diabetes
  • Metabolomics
  • Disinfection byproducts
  • Trihalomethanes
  • HUNT
  • Lifelines
  • LASSO
  • Brominated disinfection byproducts