Metabolomics study of oral cancers

Abstract

Background

Oral cancer is one of the most frequently occurring cancers. Metabolic reprogramming is an important hallmark of cancer. Metabolomics characterizes all the small molecules in a biological sample, and a complete set of small molecules in such sample is referred as metabolome. Nuclear magnetic resonance spectroscopy and mass spectrometry are two widely used techniques in metabolomics studies. Increasing evidence demonstrates that metabolomics techniques can be used to explore the metabolic signatures in oral cancer. Elucidation of metabolic alterations in oral cancer is also important for the understanding of its pathological mechanisms.

Aim of review

In this paper, we summarize the latest progress of metabolomics study in oral cancer and provide the suggestions for the future studies.

Key scientific concepts of review

The metabolomics studies in saliva, serum, and tumor tissues revealed the existence of metabolic signatures in bio-fluids and tissues of oral cancer, and several tumor-specific metabolites identified in individual study could discriminate oral cancer from healthy controls or precancerous lesions, which are potential biomarkers for the screening or early diagnosis of oral cancer. Metabolomics study of oral cancers in the future should aim to establish a routine procedure with high sensitivity, profile intracellular metabolites to find out the metabolic characteristics of tumor cells, and investigate the mechanism behind metabolomic alterations and the metabolic response of cancer cells to chemotherapy.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Asai, Y., et al. (2018). Elevated polyamines in saliva of pancreatic cancer. Cancers, 10, E43. https://doi.org/10.3390/cancers10020043.

    CAS  Article  Google Scholar 

  2. Backshall, A., Sharma, R., Clarke, S. J., & Keun, H. C. (2011). Pharmacometabonomic profiling as a predictor of toxicity in patients with inoperable colorectal cancer treated with capecitabine. Clinical Cancer Research, 17, 3019–3028. https://doi.org/10.1158/1078-0432.CCR-10-2474.

    CAS  Article  Google Scholar 

  3. Bag, S., et al. (2015). NMR ((1)H and (13)C) based signatures of abnormal choline metabolism in oral squamous cell carcinoma with no prominent Warburg effect. Biochemical and Biophysical Research Communications, 459, 574–578. https://doi.org/10.1016/j.bbrc.2015.02.149.

    CAS  Article  Google Scholar 

  4. Bag, S., et al. (2016). NanoLC MALDI MS/MS based quantitative metabolomics reveals the alteration of membrane biogenesis in oral cancer. Rsc Advances, 6, 62420–62433. https://doi.org/10.1039/c6ra07001a.

    CAS  Article  Google Scholar 

  5. Bezabeh, T., et al. (2005). Prediction of treatment response in head and neck cancer by magnetic resonance spectroscopy. AJNR American Journal of Neuroradiology, 26, 2108–2113.

    Google Scholar 

  6. Cardoso, M. R., Santos, J. C., Ribeiro, M. L., Talarico, M. C. R., Viana, L. R., & Derchain, S. F. M. (2018). A metabolomic approach to predict breast cancer behavior and chemotherapy response. International Journal of Molecular Sciences, 19, E617. https://doi.org/10.3390/ijms19020617.

    CAS  Article  Google Scholar 

  7. Chen, H. W., Zhou, W., Liao, Y., Hu, S. C., Chen, T. L., & Song, Z. C. (2018). Analysis of metabolic profiles of generalized aggressive periodontitis. Journal of Periodontal Research, 53, 894–901. https://doi.org/10.1111/jre.12579.

    CAS  Article  Google Scholar 

  8. Chen, X., & Zhao, Y. (2017). Human papillomavirus infection in oral potentially malignant disorders and cancer. Archives of Oral Biology, 83, 334–339. https://doi.org/10.1016/j.archoralbio.2017.08.011.

    Article  Google Scholar 

  9. Cooke, M., Leeves, N., & White, C. (2003). Time profile of putrescine, cadaverine, indole and skatole in human saliva. Archives of Oral Biology, 48, 323–327.

    CAS  Article  Google Scholar 

  10. El-Sayed, S., et al. (2002). An ex vivo study exploring the diagnostic potential of 1H magnetic resonance spectroscopy in squamous cell carcinoma of the head and neck region. Head and Neck, 24, 766–772. https://doi.org/10.1002/hed.10125.

    Article  PubMed  Google Scholar 

  11. Gerner, E. W., & Meyskens, F. L. Jr. (2004). Polyamines and cancer: old molecules, new understanding. Nature Reviews Cancer, 4, 781–792. https://doi.org/10.1038/nrc1454.

    CAS  Article  PubMed  Google Scholar 

  12. Glunde, K., Bhujwalla, Z. M., & Ronen, S. M. (2011). Choline metabolism in malignant transformation. Nature Reviews Cancer, 11, 835–848. https://doi.org/10.1038/nrc3162.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Goldberg, S., Kozlovsky, A., Gordon, D., Gelernter, I., Sintov, A., & Rosenberg, M. (1994). Cadaverine as a putative component of oral malodor. Journal of Dental Research, 73, 1168–1172. https://doi.org/10.1177/00220345940730060701.

    CAS  Article  Google Scholar 

  14. Gupta, A., Gupta, S., & Mahdi, A. A. (2015). (1)H NMR-derived serum metabolomics of leukoplakia and squamous cell carcinoma. Clinica Chimica Acta, 441, 47–55. https://doi.org/10.1016/j.cca.2014.12.003.

    CAS  Article  Google Scholar 

  15. Hirayama, A., et al. (2015). Effects of processing and storage conditions on charged metabolomic profiles in blood. Electrophoresis, 36, 2148–2155. https://doi.org/10.1002/elps.201400600.

    CAS  Article  Google Scholar 

  16. Ishikawa, S., et al. (2016). Identification of salivary metabolomic biomarkers for oral cancer screening. Scientific Reports, 6, 31520. https://doi.org/10.1038/srep31520.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Ishikawa, S., et al. (2017). Effect of timing of collection of salivary metabolomic biomarkers on oral cancer detection. Amino Acids, 49, 761–770. https://doi.org/10.1007/s00726-017-2378-5.

    CAS  Article  Google Scholar 

  18. Ji, E. H., et al. (2017). Metabolomic analysis of human oral cancer cells with adenylate kinase 2 or phosphorylate glycerol kinase 1 inhibition. Journal of Cancer, 8, 298–304. https://doi.org/10.7150/jca.17521.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Kawanishi, N., et al. (2018). Effects of inter-day and intra-day variation on salivary metabolomic profiles. Clinica Chimica Acta, 489, 41–48. https://doi.org/10.1016/j.cca.2018.11.030.

    CAS  Article  Google Scholar 

  20. Kong, X., et al. (2015). Analysis of plasma metabolic biomarkers in the development of 4-nitroquinoline-1-oxide-induced oral carcinogenesis in rats. Oncology Letters, 9, 283–289. https://doi.org/10.3892/ol.2014.2619.

    Article  PubMed  Google Scholar 

  21. Kuboniwa, M., Sakanaka, A., Hashino, E., Bamba, T., Fukusaki, E., & Amano, A. (2016). Prediction of periodontal inflammation via metabolic profiling of saliva. Journal of Dental Research, 95, 1381–1386. https://doi.org/10.1177/0022034516661142.

    CAS  Article  PubMed  Google Scholar 

  22. Lau, C., et al. (2013). Role of pancreatic cancer-derived exosomes in salivary biomarker development. Journal of Biological Chemistry, 288, 26888–26897. https://doi.org/10.1074/jbc.M113.452458.

    CAS  Article  PubMed  Google Scholar 

  23. Liu, R., et al. (2013). Identification of plasma metabolomic profiling for diagnosis of esophageal squamous-cell carcinoma using an UPLC/TOF/MS platform. International Journal of Molecular Sciences, 14, 8899–8911. https://doi.org/10.3390/ijms14058899.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Markley, J. L., et al. (2017). The future of NMR-based metabolomics. Current Opinion in Biotechnology, 43, 34–40. https://doi.org/10.1016/j.copbio.2016.08.001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Mikkonen, J. J., Singh, S. P., Herrala, M., Lappalainen, R., Myllymaa, S., & Kullaa, A. M. (2016). Salivary metabolomics in the diagnosis of oral cancer and periodontal diseases. Journal of Periodontal Research, 51, 431–437. https://doi.org/10.1111/jre.12327.

    CAS  Article  PubMed  Google Scholar 

  26. Mukherjee, P. K., et al. (2017). Metabolomic analysis identifies differentially produced oral metabolites, including the oncometabolite 2-hydroxyglutarate, in patients with head and neck squamous cell carcinoma. BBA Clinical, 7, 8–15. https://doi.org/10.1016/j.bbacli.2016.12.001.

    Article  PubMed  Google Scholar 

  27. Mukherji, S. K., Schiro, S., Castillo, M., Kwock, L., Muller, K. E., & Blackstock, W. (1997). Proton MR spectroscopy of squamous cell carcinoma of the extracranial head and neck: in vitro and in vivo studies. AJNR American Journal of Neuroradiology, 18, 1057–1072.

    CAS  PubMed  Google Scholar 

  28. Musharraf, S. G., Shahid, N., Naqvi, S. M., Saleem, M., Siddiqui, A. J., & Ali, A. (2016). Metabolite profiling of preneoplastic and neoplastic lesions of oral cavity tissue samples revealed a biomarker pattern. Science Reports, 6, 38985. https://doi.org/10.1038/srep38985.

    CAS  Article  Google Scholar 

  29. Nakagawa, H., Hayata, Y., Kawamura, S., Yamada, T., Fujiwara, N., & Koike, K. (2018). Lipid metabolic reprogramming in hepatocellular carcinoma. Cancers, 10, E447. https://doi.org/10.3390/cancers10110447.

    Article  PubMed  Google Scholar 

  30. Nicholson, J. K., & Lindon, J. C. (2008). Systems biology: metabonomics. Nature, 455, 1054–1056. https://doi.org/10.1038/4551054a.

    CAS  Article  Google Scholar 

  31. Ogawa, T., Washio, J., Takahashi, T., Echigo, S., & Takahashi, N. (2014). Glucose and glutamine metabolism in oral squamous cell carcinoma: insight from a quantitative metabolomic approach. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, 118, 218–225. https://doi.org/10.1016/j.oooo.2014.04.003.

    Article  Google Scholar 

  32. Ohshima, M., Sugahara, K., Kasahara, K., & Katakura, A. (2017). Metabolomic analysis of the saliva of Japanese patients with oral squamous cell carcinoma. Oncology Reports, 37, 2727–2734. https://doi.org/10.3892/or.2017.5561.

    CAS  Article  Google Scholar 

  33. Okamura, M., Kobayashi, M., Suzuki, F., Shimada, J., & Sakagami, H. (2007). Induction of cell death by combination treatment with cisplatin and 5-fluorouracil in a human oral squamous cell carcinoma cell line. Anticancer Research, 27, 3331–3337.

    CAS  Google Scholar 

  34. Rai, V., Mukherjee, R., Ghosh, A. K., Routray, A., & Chakraborty, C. (2018). “Omics” in oral cancer: new approaches for biomarker discovery. Archives of Oral Biology, 87, 15–34. https://doi.org/10.1016/j.archoralbio.2017.12.003.

    CAS  Article  Google Scholar 

  35. Romano, F., et al. (2018). Analysis of salivary phenotypes of generalized aggressive and chronic periodontitis through nuclear magnetic resonance-based metabolomics. Journal of Periodontology, 89, 1452–1460. https://doi.org/10.1002/Jper.18-0097.

    CAS  Article  Google Scholar 

  36. Roodhart, J. M., et al. (2011). Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell, 20, 370–383. https://doi.org/10.1016/j.ccr.2011.08.010.

    CAS  Article  Google Scholar 

  37. Sakanaka, A., Kuboniwa, M., Hashino, E., Bamba, T., Fukusaki, E., & Amano, A. (2017). Distinct signatures of dental plaque metabolic byproducts dictated by periodontal inflammatory status. Science Reports, 7, 42818. https://doi.org/10.1038/srep42818.

    CAS  Article  Google Scholar 

  38. Sant’Anna-Silva, A. C. B., Santos, G. C., Campos, S. P. C., Oliveira Gomes, A. M., Perez-Valencia, J. A., & Rumjanek, F. D. (2018). Metabolic profile of oral squamous carcinoma cell lines relies on a higher demand of lipid metabolism in metastatic cells. Frontiers Oncology, 8, 13. https://doi.org/10.3389/fonc.2018.00013.

    Article  Google Scholar 

  39. Shankar, A. A., Alex, S., & Routray, S. (2014). Incorporation of salivary metabolomics in oral cancer diagnostics. Oral Oncology, 50, e53–e54. https://doi.org/10.1016/j.oraloncology.2014.07.013.

    Article  Google Scholar 

  40. Shin, J. M., Kamarajan, P., Fenno, J. C., Rickard, A. H., & Kapila, Y. L. (2016). Metabolomics of head and neck cancer: a mini-review. Frontiers in Physiology, 7, 526. https://doi.org/10.3389/fphys.2016.00526.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Somashekar, B. S., et al. (2011). Magic angle spinning NMR-based metabolic profiling of head and neck squamous cell carcinoma tissues. Journal of Proteome Research, 10, 5232–5241. https://doi.org/10.1021/pr200800w.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Srivastava, S., Roy, R., Gupta, V., Tiwari, A., Srivastava, A. N., & Sonkar, A. (2011). Proton HR-MAS MR spectroscopy of oral squamous cell carcinoma tissues: an ex vivo study to identify malignancy induced metabolic fingerprints. Metabolomics, 7, 278–288. https://doi.org/10.1007/s11306-010-0253-4.

    CAS  Article  Google Scholar 

  43. Star-Lack, J. M., et al. (2000). In vivo 1H MR spectroscopy of human head and neck lymph node metastasis and comparison with oxygen tension measurements. AJNR American Journal of Neuroradiology, 21, 183–193.

    CAS  Google Scholar 

  44. Sugimoto, M., Wong, D. T., Hirayama, A., Soga, T., & Tomita, M. (2010). Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics, 6, 78–95. https://doi.org/10.1007/s11306-009-0178-y.

    CAS  Article  Google Scholar 

  45. Sun, L. C., Suo, C. X., Li, S. T., Zhang, H. F., & Gao, P. (2018). Metabolic reprogramming for cancer cells and their microenvironment: beyond the Warburg effect. Biochimica et Biophysica Acta, 1870, 51–66. https://doi.org/10.1016/j.bbcan.2018.06.005.

    CAS  Article  Google Scholar 

  46. Suzuki, R., Matsuno, S., Sakagami, H., Okada, Y., & Shirataki, Y. (2014). Search of new cytotoxic crude materials against human oral squamous cell carcinoma using 1H NMR-based metabolomics. Anticancer Research, 34, 4117–4120.

    CAS  Google Scholar 

  47. Takayama, T., et al. (2016). Diagnostic approach to breast cancer patients based on target metabolomics in saliva by liquid chromatography with tandem mass spectrometry. Clinica Chimica Acta, 452, 18–26. https://doi.org/10.1016/j.cca.2015.10.032.

    CAS  Article  Google Scholar 

  48. Takeda, I., et al. (2009). Understanding the human salivary metabolome. NMR in Biomedicine, 22, 577–584. https://doi.org/10.1002/nbm.1369.

    CAS  Article  Google Scholar 

  49. Tan, Y., et al. (2012). Metabolomics study of stepwise hepatocarcinogenesis from the model rats to patients: potential biomarkers effective for small hepatocellular carcinoma diagnosis. Molecular and Cell Proteomics, 11, M111 010694. https://doi.org/10.1074/mcp.M111.010694.

    CAS  Article  Google Scholar 

  50. Tanaka, S., Machino, M., Akita, S., Yokote, Y., & Sakagami, H. (2010). Changes in salivary amino acid composition during aging. In Vivo, 24, 853–856.

    CAS  PubMed  Google Scholar 

  51. Tiziani, S., Lopes, V., & Gunther, U. L. (2009). Early stage diagnosis of oral cancer using 1H NMR-based metabolomics. Neoplasia, 11, 269–276, 4p following 269.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Tomita, A., et al. (2018). Effect of storage conditions on salivary polyamines quantified via liquid chromatography-mass spectrometry. Science Reports, 8, 12075. https://doi.org/10.1038/s41598-018-30482-x.

    CAS  Article  Google Scholar 

  53. Tripathi, P., et al. (2012). Delineating metabolic signatures of head and neck squamous cell carcinoma: phospholipase A2, a potential therapeutic target. International Journal of Biochemistry and Cell Biology, 44, 1852–1861. https://doi.org/10.1016/j.biocel.2012.06.025.

    CAS  Article  PubMed  Google Scholar 

  54. Urakami, K., Zangiacomi, V., Yamaguchi, K., & Kusuhara, M. (2013). Impact of 2-deoxy-D-glucose on the target metabolome profile of a human endometrial cancer cell line. Biomedical Research, 34, 221–229.

    CAS  Article  PubMed  Google Scholar 

  55. Wang, H., et al. (2015). (1)H nuclear magnetic resonance-based extracellular metabolomic analysis of multidrug resistant Tca8113 oral squamous carcinoma cells. Oncology Letters, 9, 2551–2559. https://doi.org/10.3892/ol.2015.3128.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Wang, J., et al. (2014a). Metabolomic profiling of anionic metabolites in head and neck cancer cells by capillary ion chromatography with Orbitrap mass spectrometry. Analytical Chemistry, 86, 5116–5124. https://doi.org/10.1021/ac500951v.

    CAS  Article  PubMed  Google Scholar 

  57. Wang, Q., Gao, P., Wang, X., & Duan, Y. (2014b). The early diagnosis and monitoring of squamous cell carcinoma via saliva metabolomics. Science Reports, 4, 6802. https://doi.org/10.1038/srep06802.

    CAS  Article  Google Scholar 

  58. Wang, Q., Gao, P., Wang, X., & Duan, Y. (2014c). Investigation and identification of potential biomarkers in human saliva for the early diagnosis of oral squamous cell carcinoma. Clinica Chimica Acta, 427, 79–85. https://doi.org/10.1016/j.cca.2013.10.004.

    CAS  Article  Google Scholar 

  59. Wang, X., et al. (2018). Taurine, glutamic acid and ethylmalonic acid as important metabolites for detecting human breast cancer based on the targeted metabolomics. Cancer Biomarkers, 23, 255–268. https://doi.org/10.3233/CBM-181500.

    CAS  Article  Google Scholar 

  60. Wang, X., Kaczor-Urbanowicz, K. E., & Wong, D. T. (2017). Salivary biomarkers in cancer detection. Medical Oncology, 34, 7. https://doi.org/10.1007/s12032-016-0863-4.

    CAS  Article  PubMed  Google Scholar 

  61. Warburg, O. (1956). On the origin of cancer cells. Science, 123, 309–314.

    CAS  Article  Google Scholar 

  62. Weaver, Z., et al. (2012). Temporal molecular and biological assessment of an erlotinib-resistant lung adenocarcinoma model reveals markers of tumor progression and treatment response. Cancer Research, 72, 5921–5933. https://doi.org/10.1158/0008-5472.CAN-12-0736.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Wei, J., et al. (2011). Salivary metabolite signatures of oral cancer and leukoplakia. International Journal of Cancer, 129, 2207–2217. https://doi.org/10.1002/ijc.25881.

    CAS  Article  PubMed  Google Scholar 

  64. Xie, G. X., et al. (2012). Urine metabolite profiling offers potential early diagnosis of oral cancer. Metabolomics, 8, 220–231. https://doi.org/10.1007/s11306-011-0302-7.

    CAS  Article  Google Scholar 

  65. Yakob, M., Fuentes, L., Wang, M. B., Abemayor, E., & Wong, D. T. (2014). Salivary biomarkers for detection of oral squamous cell carcinoma - current state and recent advances. Current Oral Health Reports, 1, 133–141. https://doi.org/10.1007/s40496-014-0014-y.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yan, S. K., Wei, B. J., Lin, Z. Y., Yang, Y., Zhou, Z. T., & Zhang, W. D. (2008). A metabonomic approach to the diagnosis of oral squamous cell carcinoma, oral lichen planus and oral leukoplakia. Oral Oncology, 44, 477–483. https://doi.org/10.1016/j.oraloncology.2007.06.007.

    CAS  Article  PubMed  Google Scholar 

  67. Yang, L. F., Venneti, S., & Nagrath, D. (2017). Glutaminolysis: A hallmark of cancer metabolism. Annual Review of Biomedical Engineering, 19, 163–194. https://doi.org/10.1146/annurev-bioeng-071516044546.

    CAS  Article  PubMed  Google Scholar 

  68. Ye, G., et al. (2012). Analysis of urinary metabolic signatures of early hepatocellular carcinoma recurrence after surgical removal using gas chromatography-mass spectrometry. Journal of Proteome Research, 11, 4361–4372. https://doi.org/10.1021/pr300502v.

    CAS  Article  PubMed  Google Scholar 

  69. Ye, G., et al. (2014). Study of induction chemotherapy efficacy in oral squamous cell carcinoma using pseudotargeted metabolomics. Journal of Proteome Research, 13, 1994–2004. https://doi.org/10.1021/pr4011298.

    CAS  Article  PubMed  Google Scholar 

  70. Yonezawa, K., et al. (2013). Serum and tissue metabolomics of head and neck cancer. Cancer Genomics & Proteomics, 10, 233–238.

    CAS  Google Scholar 

  71. Yu, L., Chen, X., Sun, X., Wang, L., & Chen, S. (2017). The glycolytic switch in tumors: How many players are involved? Journal of Cancer, 8, 3430–3440. https://doi.org/10.7150/jca.21125.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Yuvaraj, M., et al. (2014). Fluorescence spectroscopic characterization of salivary metabolites of oral cancer patients. Journal of Photochemistry and Photobiology B, 130, 153–160. https://doi.org/10.1016/j.jphotobiol.2013.11.006.

    CAS  Article  Google Scholar 

  73. Zaal, E. A., Wu, W., Jansen, G., Zweegman, S., Cloos, J., & Berkers, C. R. (2017). Bortezomib resistance in multiple myeloma is associated with increased serine synthesis. Cancer & Metabolism, 5, 7. https://doi.org/10.1186/s40170-017-0169-9.

    Article  Google Scholar 

  74. Zhang, R. X., Zhuang, X. Y., Zong, L., Liu, S., Liu, Z. Q., & Song, F. R. (2016). Investigations on the cell metabolomics basis of multidrug resistance from tumor cells by ultra-performance liquid chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry, 408, 5843–5854. https://doi.org/10.1007/s00216-016-9696-4.

    CAS  Article  Google Scholar 

  75. Zhong, L. P., Cheng, F., Lu, X. Y., Duan, Y. X., & Wang, X. D. (2016). Untargeted saliva metabonomics study of breast cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Talanta, 158, 351–360. https://doi.org/10.1016/j.talanta.2016.04.049.

    CAS  Article  Google Scholar 

  76. Zhou, J., et al. (2009). 1H NMR-based metabonomic and pattern recognition analysis for detection of oral squamous cell carcinoma. Clinica Chimica Acta, 401, 8–13. https://doi.org/10.1016/j.cca.2008.10.030.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (No. 81873711 and No. 31670788) and Open Fund of Guangdong Key Laboratory of Pharmaceutical Functional Genes (No.2014B030301028 and No.2017B030314021).

Author information

Affiliations

Authors

Contributions

DY conceived and designed review. XC and DY wrote, read and approved the manuscript. XC drew figure.

Corresponding author

Correspondence to Dongsheng Yu.

Ethics declarations

Conflict of interest

The authors confirm that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Yu, D. Metabolomics study of oral cancers. Metabolomics 15, 22 (2019). https://doi.org/10.1007/s11306-019-1483-8

Download citation

Keywords

  • Oral cancer
  • Oral squamous cell carcinoma
  • Metabolomics
  • Metabolome
  • Metabolites