NMR metabolic profiling of follicular fluid for investigating the different causes of female infertility: a pilot study

Abstract

Introduction

Several metabolomics studies have correlated follicular fluid (FF) metabolite composition with oocyte competence to fertilization, embryo development and pregnancy but there is a scarcity of research examining the metabolic effects of various gynaecological diseases.

Objectives

In this study we aimed to analyze and correlate the metabolic profile of FF from women who were following in vitro fertilization (IVF) treatments with their different infertility pathologies.

Methods

We selected 53 women undergoing IVF who were affected by: tubal diseases, unexplained infertility, endometriosis, polycystic ovary syndrome (PCOS). FF of the study participants was collected at the time of oocytes retrieval. Metabolomic analysis of FF was performed by nuclear magnetic resonance (NMR) spectroscopy.

Results

FF presents some significant differences in various infertility pathologies. Although it was not possible to discriminate between FF of control participants and women with tubal diseases and unexplained infertility, comparison of FF metabolic profile from control women with patients with endometriosis and PCOS revealed significant differences in some metabolites that can be correlated to the causes of infertility.

Conclusion

NMR-based metabolic profiling may be successfully applied to find diagnostic biomarkers for PCOS and endometriosis and it might be also used to predict oocyte developmental potential and subsequent outcome.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ahn, S. H., Singh, V., & Tayade, C. (2017). Biomarkers in endometriosis: Challenges and opportunities. Fertility and Sterility, 107(3), 523–532. https://doi.org/10.1016/j.fertnstert.2017.01.009.

    CAS  Article  PubMed  Google Scholar 

  2. Arya, B. K., Haq, U., A., & Chaudhury, K. (2012). Oocyte quality reflected by follicular fluid analysis in polycystic ovary syndrome (PCOS): A hypothesis based on intermediates of energy metabolism. Medical Hypotheses, 78(4), 475–478. https://doi.org/10.1016/j.mehy.2012.01.009.

    CAS  Article  PubMed  Google Scholar 

  3. Azziz, R. (2004). PCOS: a diagnostic challenge. Reproductive BioMedicine Online, 8(6), 644–648. https://doi.org/10.1016/S1472-6483(10)61644-6.

    Article  PubMed  Google Scholar 

  4. Beckonert, O., Keun, H. C., Ebbels, T. M. D., Bundy, J., Holmes, E., Lindon, J. C., et al. (2007). Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature Protocols. 2(11), 2692–2703. https://doi.org/10.1038/nprot.2007.376

    CAS  Article  PubMed  Google Scholar 

  5. Bracewell-Milnes, T., Saso, S., Abdalla, H., Nikolau, D., Norman-Taylor, J., Johnson, M., et al. (2017). Metabolomics as a tool to identify biomarkers to predict and improve outcomes in reproductive medicine: A systematic review. Human Reproduction Update, 23(6), 723–736. https://doi.org/10.1093/humupd/dmx023.

    Article  PubMed  Google Scholar 

  6. Bulun, S. E. (2009). Endometriosis. New England Journal of Medicine, 360, 268–279. https://doi.org/10.1056/NEJMra0804690.

    CAS  Article  PubMed  Google Scholar 

  7. Castiglione Morelli, M. A. Iuliano, A., Schettini, S. C. A., Petruzzi, D., Ferri, A., Colucci, P., Viggiani, L., Cuviello, F., & Ostuni, A. (2018). NMR metabolomics study of follicular fluid in women with cancer resorting to fertility preservation. Journal of Assisted Reproduction and Genetics. https://doi.org/10.1007/s10815-018-1281-7.

    Article  PubMed  Google Scholar 

  8. Chen, Y. H., Heneidi, S., Lee, J. M., Layman, L. C., Stepp, D. W., Gamboa, G. M., et al. (2013). miRNA-93 inhibits GLUT4 and is over-expressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes, 62(7), 2278–2286. https://doi.org/10.2337/db12-0963.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Cordeiro, F. B., Cataldi, T. R., Perkel, K. J.,, Rochetti, L., Stevanato, R. C., do Vale Teixeira da Costa J., et al (2015). Lipidomics analysis of follicular fluid by ESI-MS reveals potential biomarkers for ovarian endometriosis. Journal of Assisted Reproduction and Genetics, 32(12), 1817–1825. https://doi.org/10.1007/s10815-015-0592-1.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dumesic, D. A., Oberfield, S. E., Stener-Victorin, E., Marshall, J. C., Laven, J. S., & Legro, R. S. (2015). Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocrine Reviews, 36(5), 487–525. https://doi.org/10.1210/er.2015-1018.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Dun, E. C., & Nezhat, C. H. (2012). Tubal factor: diagnosis and management in the era of assisted reproductive technology. Obstetrics and Gynecology Clinics of North America, 39, 551–566. https://doi.org/10.1016/j.ogc.2012.09.006.

    Article  PubMed  Google Scholar 

  12. Dutta, M., Joshi, M., Srivastava, S., Lodh, I., Chakravarty, B., & Chaudhury, K. (2012). A metabonomics approach as a means for identification of potential biomarkers for early diagnosis of endometriosis. Molecular BioSystems, 8, 3281–3287. https://doi.org/10.1039/c2mb25353d.

    CAS  Article  PubMed  Google Scholar 

  13. Emwas, A. H., Luchinat, C., Turano, P., Tenori, L., Roy, R., Salek, R. M., et al. (2015). Standardizing the experimental conditions for using urine in NMR-based metabolomics studies with a particular focus on diagnostic studies: A review. Metabolomics, 11, 872–894. https://doi.org/10.1007/s11306-014-0746-7.

    CAS  Article  PubMed  Google Scholar 

  14. Engmann, L., Maconochie, N., Sladkevicius, P., Bekir, J., Campbell, S., & Tan, S. L. (1999). The outcome of in-vitro fertilization treatment in women with sonographic evidence of polycystic ovarian syndrome. Human Reproduction, 14(1), 167–171. https://doi.org/10.1093/humrep/14.1.167.

    CAS  Article  PubMed  Google Scholar 

  15. Fahiminiya, S., & Gérard, N. (2010). Le liquide folliculaire chez les mammifères. Gynécologie Obstétrique & Fertilité, 38, 402–404. https://doi.org/10.1016/j.gyobfe.2010.04.010.

    CAS  Article  Google Scholar 

  16. Fassbender, A., Burney, R. O., Dorien, F. O., D’Hooghe, T., & Giudice, L. (2015). Update on biomarkers for the detection of endometriosis. Biomed Research International. https://doi.org/10.1155/2015/130854.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hayek, S. E., Bitar, L., Hamdar, L. H., Mirza, F. G., & Daoud, G. (2016). Poly cystic ovarian syndrome: an updated overview. Frontiers in Physiology, 7, 124. https://doi.org/10.3389/fphys.2016.00124.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Karaer, A., Tuncay, G., Mumcu, A., & Dogan, B. (2018). Metabolomics analysis of follicular fluid in women with ovarian endometriosis undergoing in vitro fertilization. Systems Biology in Reproductive Medicine. https://doi.org/10.1080/19396368.2018.1478469.

    Article  PubMed  Google Scholar 

  19. Kirkegaard, K., Svane, A. S. P., Nielsen, J. S., Hindkjær, J. J., Nielsen, N. C., & Ingerslev, H. J. (2014). Nuclear magnetic resonance metabolic profiling of day 3 and 5 embryo culture medium does not predict pregnancy outcome in good prognosis patients: A prospective cohort study on single transferred embryos. Human Reproduction, 29(11), 2413–2420. https://doi.org/10.1093/humrep/deu236.

    CAS  Article  PubMed  Google Scholar 

  20. La Marca, A., Grisendi, V., Giulini, S., Argento, C., Tirelli, A., Dondi, G., et al. (2013). Individualization of the FSH starting dose in IVF/ICSI cycles using the antral follicle count. Journal of Ovarian Research, 6, 11. https://doi.org/10.1186/1757-2215-6-11.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Li, H. W., Lee, V. C., Lau, E. Y., Yeung, W. S., Ho, P. C., & Ng, E. H. (2014). Cumulative live-birth rate in women with polycystic ovary syndrome or isolated polycystic ovaries undergoing in-vitro fertilisation treatment. Journal of Assisted Reproduction and Genetics, 31(2), 205–211. https://doi.org/10.1007/s10815-013-0151-6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mamas, M., Dunn, W. B., Neyes, L., & Goodacre, R. (2011). The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Archives of Toxicology, 85(1), 5–17. https://doi.org/10.1007/s00204-010-0609-6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Markley, J. L., Brüschweiler, R., Edison, A. S., Eghbalnia, H. R., Powers, R., Raftery, D., et al. (2017). The future of NMR-based metabolomics. Current Opinion in Biotechnology, 43, 34–40. https://doi.org/10.1016/j.copbio.2016.08.001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Matarese, G., De Placido, G., Nikas, Y., & Alviggi, C. (2003). Pathogenesis of endometriosis: Natural immunity dysfunction or autoimmune disease? Trends in Molecular Medicine, 9(5), 223–228. https://doi.org/10.1016/S1471-4914(03)00051-0.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. May, K. E., Conduit-Hulbert, S. A., Villar, J., Kirtley, S., Kennedy, S. H., & Becker, C. M. (2010). Pheripheral biomarkers of endometriosis: A systematic review. Human Reproduction Update, 16(6), 651–674. https://doi.org/10.1093/humupd/dmq009.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. McRae, C., Baskind, N. E., Orsi, N. M., Sharma, V., & Fisher, J. (2012). Metabolic profiling of follicular fluid and plasma from natural cycle in vitro fertilization patients-a pilot study. Fertility and Sterility, 98(6), 1449–1457. https://doi.org/10.1016/j.fertnstert.2012.07.1131.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. McRae, C., Sharma, V., & Fisher, J. (2013) Metabolite profiling in the pursuit of biomarkers for IVF outcome: The case for metabolomics studies. International Journal of Reproductive Medicine. https://doi.org/10.1155/2013/603167.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Murri, M., Insenser, M., & Escobar-Morreale, H. F. (2013). Metabolomics in polycystic ovary syndrome. Clinica Chimica Acta, 429, 181–188. https://doi.org/10.1016/j.cca.2013.12.018.

    CAS  Article  Google Scholar 

  29. Nadal-Desbarats, L., Veau, S., Blasco, H., Emond, P., Royere, D., Andres, C. R., et al. (2013). Is NMR metabolic profiling of spent embryo culture media useful to assist in vitro human embryo selection? Magnetic Resonance Materials in Physics, Biology and Medicine, 26(2), 193–202. https://doi.org/10.1007/s10334-012-0331-x.

    CAS  Article  Google Scholar 

  30. Nagana Gowda, G. A., Zhang, S., Gu, H., Asiago, V., Shanaiah, N., & Raftery, D. (2008). Metabolomics-based methods for early disease diagnostics: A review. Expert Review of Molecular Diagnostics, 8(5), 617–633. https://doi.org/10.1586/14737159.8.5.617.

    Article  PubMed Central  Google Scholar 

  31. Nel-Themaat, L., & Nagy, Z. P. (2011). A review of the promises and pitfalls of oocyte and embryo metabolomics. Placenta, 32, 257–263. https://doi.org/10.1016/j.placenta.2011.05.011.

    CAS  Article  Google Scholar 

  32. O’Gorman, A., Wallace, M., Cottell, E., Gibney, M. J., McAuliffe, F. M., Wingfield, M., et al. (2013). Metabolic profiling of human follicular fluid identifies potential biomarkers of oocyte developmental competence. Reproduction, 146(4), 389–395. https://doi.org/10.1530/REP-13-0184.

    CAS  Article  PubMed  Google Scholar 

  33. Palomba, S., Daolio, J., & La Sala, G. B. (2017). Oocyte competence in women with polycystic ovary syndrome. Trends in Endocrinology and Metabolism, 28(3), 186–198. https://doi.org/10.1016/j.tem.2016.11.008.

    CAS  Article  PubMed  Google Scholar 

  34. Pan, J. X., Zhang, J. Y., Ke, Z. H., Wang, F. F., Barry, J. A., Hardiman, P. J., & Qu, F. (2015). Androgens as double-edged swords: Induction and suppression of follicular development. Hormones, 14(2), 190–200. https://doi.org/10.14310/horm.2002.1580.

    Article  PubMed  Google Scholar 

  35. Piñero-Sagredo, E., Nunes, S., de los Santos, M. J., Celda, B., & Esteve, V. (2010). NMR metabolic profile of human follicular fluid. NMR in Biomedicine, 23, 485–495. https://doi.org/10.1002/nbm.1488.

    CAS  Article  PubMed  Google Scholar 

  36. Ray, A., Shah, A., Gudi, A., & Homburg, R. (2012). Unexplained infertility: an update and review of practice. Reproductive Biomedicine Online, 24, 591–602. https://doi.org/10.1016/j.rbmo.2012.02.021.

    Article  PubMed  Google Scholar 

  37. Revelli, A., Delle Piane, L., Casano, S., Molinari, E., Massobrio, M., & Rinaudo, P. (2009). Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reproductive Biology and Endocrinology, 7, 40.

    Article  Google Scholar 

  38. RoyChoudhury, S., Mishra, B. P., Khan, T., Chattopadhayay, R., Lodh, I., Ray, D., C., et al (2016). Serum metabolomics of Indian women with polycystic ovary syndrome using 1H NMR coupled with a pattern recognition approach. Molecular Biosystems, 12(11), 3407–3416. https://doi.org/10.1039/C6MB00420B.

    CAS  Article  PubMed  Google Scholar 

  39. Santonastaso, M., Pucciarelli, A., Costantini, S., Caprio, F., Sorice, A., Capone, F., et al. (2017). Metabolomic profiling and biochemical evaluation of the follicular fluid of endometriosis patients. Molecular Biosystems, 13, 1213–1222. https://doi.org/10.1039/C7MB00181A.

    Article  Google Scholar 

  40. Singh, R., & Sinclair, K. D. (2007). Metabolomics: Approaches to assessing oocyte and embryo quality. Theriogenology, 68S, S56–62. https://doi.org/10.1016/j.theriogenology.2007.04.007.

    CAS  Article  Google Scholar 

  41. The American Fertility Society. (1985). Revised American Fertility Society classification of endometriosis: 1985. Fertility and Sterility, 43, 351–352. https://doi.org/10.1016/S0015-0282(16)48430-X.

    Article  Google Scholar 

  42. Wallace, M., Cottell, E., Gibney, M. J., McAuliffe, F. M., Wingfield, M., & Brennan, L. (2012). An investigation into the relationship between the metabolic profile of follicular fluid, oocyte developmental potential, and implantation outcome. Fertility and Sterility, 97(5), 1078–1084. https://doi.org/10.1016/j.fertnstert.2012.01.122.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Xia, L., Zhao, X., Sun, Y., Hong, Y., Gao, Y., & Hu, S. (2014). Metabolomic profiling of human follicular fluid from patients with repeated failure of in vitro fertilization using gas chromatography/mass spectrometry. International Journal of Clinical and Experimental Pathology, 7(10), 7220–7229.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, Y., Liu, L., Yin, T. L., Yang, J., & Xiong, C. L. (2017). Follicular metabolic changes and effects on oocyte quality in polycystic ovary syndrome patients. Oncotarget, 8(46), 80472–80480. https://doi.org/10.18632/oncotarget.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhao, H., Zhao, Y., Li, T., Li, M., Li, J., Li, R., et al. (2015). Metabolism alteration in follicular niche: The nexus among intermediary metabolism, mitochondrial function, and classic polycystic ovary syndrome. Free Radical Biology and Medicine, 86, 295–307. https://doi.org/10.1016/j.freeradbiomed.2015.05.013.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Zullo, F., Spagnolo, E., Saccone, G., Acunzo, M., Xodo, S., Ceccaroni, M., et al. (2017). Endometriosis and obstetrics complications: A systematic review and meta-analysis. Fertility and Sterility, 108(4), 667–672. https://doi.org/10.1016/j.fertnstert.2017.07.019.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors received no financial support for this study.

Author information

Affiliations

Authors

Contributions

SS, AI, and AO designed the study. AI selected the participants and executed oocyte retrieval. DP executed oocyte retrieval. AF identified oocytes in follicular fluid and executed their fertilization. PC selected the follicular fluids to be used for metabolomic analyses. CM performed the analysis of NMR data and multivariate analysis. LV run the NMR experiments. FC performed statistical analysis. AO, AI, and CM were responsible for conducting the study and writing the manuscript which was critically discussed, edited and approved by all co-authors.

Corresponding author

Correspondence to Angela Ostuni.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Research involving human rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional, national research committee and with the 1964 Helsinki Declaration and its later amendments.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 562 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Castiglione Morelli, M.A., Iuliano, A., Schettini, S.C.A. et al. NMR metabolic profiling of follicular fluid for investigating the different causes of female infertility: a pilot study. Metabolomics 15, 19 (2019). https://doi.org/10.1007/s11306-019-1481-x

Download citation

Keywords

  • Metabolomics
  • Follicular fluid
  • NMR spectroscopy
  • Gynaecological pathologies
  • Infertility factors
  • In vitro fertilization (IVF)