Skip to main content
Log in

Trial data of the anti-obesity potential of a high resistant starch diet for canines using Dodamssal rice and the identification of discriminating markers in feces for metabolic profiling

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Dodamssal rice (Oryza sativa L.) includes high levels of resistant starch (RS), which is a source of dietary fiber. Recently, there has been an increase in the prevalence of obesity in canines; however, the information regarding diet treatments for such a condition is inadequate.

Objectives

Targeted metabolic profiles in canine feces were performed to identify potential biomarkers of RS and demonstrate the effect and potential use of Dodamssal rice as an anti-obesity treatment.

Methods

Study canines were divided into three groups and fed either a regular diet, high-fat diet (HFD), or high-fat diet with Dodamssal rice (DoHFD). Fecal metabolites were analyzed using gas chromatography time-of-flight mass spectrometry and a gas chromatography-flame ionization detector. Multivariate analyses were used to analyze and visualize the obtained data.

Results

A total of 52 metabolites were detected in the canine feces. In addition, HFD group feces contained a significantly low level of C12:0. The DoHFD group feces had higher levels of 4-aminobutyric acid, glucose, and 3-hydroxybutyric acid compared to the other groups (p < 0.05).

Conclusion

For the first time, targeted metabolic profiling in the canine feces in response to three diets was performed. This metabolic profiling approach should be a useful tool to detect discriminating markers as well as assess the effect of diet compositions for anti-obesity treatment of canines. Furthermore, Dodamssal rice may possibly be used not only for canines, but also to treat obesity in other animals and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allaway, D., Kamlage, B., Gilham, M. S., Hewson-Hughes, A. K., Wiemer, J. C., Colyer, A., et al. (2013). Effects of dietary glucose supplementation on the fasted plasma metabolome in cats and dogs. Metabolomics, 9(5), 1096–1108.

    Article  CAS  Google Scholar 

  • An, Y., Xu, W., Li, H., Lei, H., Zhang, L., Hao, F., et al. (2013). High-fat diet induces dynamic metabolic alterations in multiple biological matrices of rats. Journal of Proteome Research, 12(8), 3755–3768.

    Article  CAS  PubMed  Google Scholar 

  • Association of American Feed Control Officials (AAFCO). (2011). 2011 Official publication: Association of American Feed Control Officials. Oxford: Association of American Feed Control Officials.

    Google Scholar 

  • Birkett, A., Muir, J., Phillips, J., Jones, G., & O’Dea, K. (1996). Resistant starch lowers fecal concentrations of ammonia and phenols in humans. The American Journal of Clinical Nutrition, 63(5), 766–772.

    Article  CAS  PubMed  Google Scholar 

  • Brown, I. L., McNaught, K. J., Ganly, R. N., Conway, P. L., Evans, A. J., Topping, D. L., et al. (1996). Probiotic compositions. International Patent WO, 96(08261), A1.

    Google Scholar 

  • Buettner, R., Parhofer, K. G., Woenckhaus, M., Wrede, C. E., Kunz-Schughart, L. A., Schölmerich, J., et al. (2006). Defining high-fat-diet rat models: Metabolic and molecular effects of different fat types. Journal of molecular endocrinology, 36(3), 485–501.

    Article  CAS  PubMed  Google Scholar 

  • Crawford, P. A., Crowley, J. R., Sambandam, N., Muegge, B. D., Costello, E. K., Hamady, M., et al. (2009). Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation. Proceedings of the National Academy of Sciences, 106(27), 11276–11281.

    Article  CAS  Google Scholar 

  • Daniel, H., Gholami, A. M., Berry, D., Desmarchelier, C., Hahne, H., Loh, G., et al. (2014). High-fat diet alters gut microbiota physiology in mice. The ISME Journal, 8(2), 295–308.

    Article  CAS  PubMed  Google Scholar 

  • Forster, G. M., Heuberger, A. L., Broeckling, C. D., Bauer, J. E., & Ryan, E. P. (2015). Consumption of cooked navy bean powders modulate the canine fecal and urine metabolome. Current Metabolomics, 3(2), 90–101.

    Article  CAS  Google Scholar 

  • Fukao, T., Lopaschuk, G. D., & Mitchell, G. A. (2004). Pathways and control of ketone body metabolism: On the fringe of lipid biochemistry. Prostaglandins, Leukotrienes and Essential Fatty Acids, 70(3), 243–251.

    Article  CAS  Google Scholar 

  • Higgins, J. A., Higbee, D. R., Donahoo, W. T., Brown, I. L., Bell, M. L., & Bessesen, D. H. (2004). Resistant starch consumption promotes lipid oxidation. Nutrition & Metabolism, 1(1), 8.

    Article  Google Scholar 

  • Kleessen, B., Stoof, G., Proll, J., Schmiedl, D., Noack, J., & Blaut, M. (1997). Feeding resistant starch affects fecal and cecal microflora and short-chain fatty acids in rats. Journal of Animal Science, 75(9), 2453–2462.

    Article  CAS  PubMed  Google Scholar 

  • Laffel, L. (1999). Ketone bodies: A review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes/Metabolism Research and Reviews, 15(6), 412–426.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J. Y., Sohn, K. H., Rhee, S. H., & Hwang, D. (2001). Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. Journal of Biological Chemistry, 276(20), 16683–16689.

    Article  CAS  PubMed  Google Scholar 

  • McGhie, T. K., & Rowan, D. D. (2012). Metabolomics for measuring phytochemicals, and assessing human and animal responses to phytochemicals, in food science. Molecular Nutrition & Food Research, 56(1), 147–158.

    Article  CAS  Google Scholar 

  • McGreevy, P. D., Thomson, P. C., Pride, C., Fawcett, A., Grassi, T., & Jones, B. (2005). Prevalence of obesity in dogs examined by Australian veterinary practices and the risk factors involved. Veterinary Record-English Edition, 156(22), 695–701.

    Article  CAS  Google Scholar 

  • Moreira, A. P. B., Texeira, T. F. S., Ferreira, A. B., Peluzio, M. D. C. G., & Alfenas, R. D. C. G. (2012). Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. British Journal of Nutrition, 108(5), 801–809.

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (NRC). (2006). Nutrient requirements of dogs and cats. Washington, DC: National Academies Press.

    Google Scholar 

  • Park, C. H., Park, S.-Y., Lee, S. Y., Kim, J. K., & Park, S. U. (2018a). Analysis of metabolites in white flowers of Magnolia denudata Desr. and violet flowers of Magnolia liliiflora Desr. Molecules, 23, 1558.

    Article  Google Scholar 

  • Park, J., Lee, S. K., Choi, I., Choi, H. S., Shin, D. S., Park, H. Y., Han, S.-I., & Oh, S.-K. (2018b). Starch content and in vitro hydrolysis index of rice varieties containing resistant starch. The Korean Journal of Crop Science, 63(4), 304–313.

    Google Scholar 

  • Park, P. W., & Goins, R. E. (1994). In situ preparation of fatty acid methyl esters for analysis of fatty acid composition in foods. Journal of Food Science, 59(6), 1262–1266.

    Article  CAS  Google Scholar 

  • Penning, M. E. M. (2014). Using first-trimester urinary metabolomics profiling to identify markers of preeclampsia. In Penning, M. E. M. (Ed.), On renal pathophysiology in preeclampsia (pp. 141–144). Leiden: Leiden University Medical Center (LUMC).

    Google Scholar 

  • Phua, L. C., Koh, P. K., Cheah, P. Y., Ho, H. K., & Chan, E. C. Y. (2013). Global gas chromatography/time-of-flight mass spectrometry (GC/TOFMS)-based metabonomic profiling of lyophilized human feces. Journal of Chromatography B, 937, 103–113.

    Article  CAS  Google Scholar 

  • Pokusaeva, K., Johnson, C., Luk, B., Uribe, G., Fu, Y., Oezguen, N., et al. (2017). GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterology & Motility, 29(1), e12904.

    Article  Google Scholar 

  • Raben, A., Tagliabue, A., Christensen, N. J., Madsen, J., Holst, J. J., & Astrup, A. (1994). Resistant starch: The effect on postprandial glycemia, hormonal response, and satiety. The American Journal of Clinical Nutrition, 60(4), 544–551.

    Article  CAS  PubMed  Google Scholar 

  • Reader, D., Johnson, M. L., Hollander, P., & Franz, M. (1997). Response of resistant starch in a food bar vs. two commercially available bars in persons with type II diabetes mellitus. Diabetes, 46(1), 254A.

    Google Scholar 

  • Reed, D. R., Tordoff, M. G., & Friedman, M. I. (1991). Enhanced acceptance and metabolism of fats by rats fed a high-fat diet. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 261(5), R1084–R1088.

    Article  CAS  Google Scholar 

  • Sadeghi-Bazargani, H., Bangdiwala, S. I., Mohammad, K., Maghsoudi, H., & Mohammadi, R. (2011). Compared application of the new OPLS-DA statistical model versus partial least squares regression to manage large numbers of variables in an injury case-control study. Scientific Research and Essays, 6(20), 4369–4377.

    Article  Google Scholar 

  • Sajilata, M. G., Singhal, R. S., & Kulkarni, P. R. (2006). Resistant starch—A review. Comprehensive Reviews in Food Science and Food Safety, 5(1), 1–17.

    Article  CAS  Google Scholar 

  • Sim, E.-Y., Chung, S.-K., Cho, J.-H., Woo, K. S., Park, H. Y., Kim, H.-J., et al. (2015). Physicochemical properties of high-amylose rice varieties. Food Engineering Progress, 19(4), 392–398.

    Article  Google Scholar 

  • Sybille, T., June, Z., Michael, K., Roy, M., & Maria, L. M., (2013). The intestinal microbiota in aged mice is modulated by dietary resistant starch and correlated with improvements in host responses. FEMS Microbiology Ecology, 83(2), 299–309.

    Article  Google Scholar 

  • Tian, J., Dang, H. N., Yong, J., Chui, W. S., Dizon, M. P., Yaw, C. K., et al. (2011). Oral treatment with γ-aminobutyric acid improves glucose tolerance and insulin sensitivity by inhibiting inflammation in high fat diet-fed mice. PLoS ONE, 6(9), e25338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viant, M. R., Ludwig, C., Rhodes, S., Günther, U. L., & Allaway, D. (2007). Validation of a urine metabolome fingerprint in dog for phenotypic classification. Metabolomics, 3(4), 453–463.

    Article  CAS  Google Scholar 

  • Viant, M. R., Kurland, I. J., Jones, M. R., & Dunn, W. B. (2017). How close are we to complete annotation of metabolomes? Current Opinion in Chemical Biology, 36, 64–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, M., Du, G., Zhong, G., Yan, D., Zeng, H., & Cai, W. (2016). Gas chromatography/mass spectrometry-based metabolomic profiling reveals alterations in mouse plasma and liver in response to Fava Beans. PLoS ONE, 11(3), e0151103.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was carried out with the support of the Incheon National University Research in 2016 and “Cooperative Research Program for Agriculture Science and Technology Development (Project No: PJ01283406)”, Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

KMS and JKK designed the experiments and analyzed the data. YJK and JGK wrote the manuscript and performed the experiments. W-KL analyzed the data.

Corresponding authors

Correspondence to Kyoung Min So or Jae Kwang Kim.

Ethics declarations

Conflict of interest

The authors declare to have no financial and non-financial conflict of interest.

Ethical approval

We followed all applicable international, national, and institutional guidelines for the care and use of animals. All procedures performed in the studies that involved animals were in accordance with the ethical standards of the institution in which the studies were conducted.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 467 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y.J., Kim, J.G., Lee, WK. et al. Trial data of the anti-obesity potential of a high resistant starch diet for canines using Dodamssal rice and the identification of discriminating markers in feces for metabolic profiling. Metabolomics 15, 21 (2019). https://doi.org/10.1007/s11306-019-1479-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-019-1479-4

Keywords

Navigation