Skip to main content
Log in

GC–MS metabolic profiling reveals fructose-2,6-bisphosphate regulates branched chain amino acid metabolism in the heart during fasting

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

As an insulin sensitive tissue, the heart decreases glucose usage during fasting. This response is mediated, in part, by decreasing phosphofructokinase-2 (PFK-2) activity and levels of its product fructose-2,6-bisphosphate. However, the importance of fructose-2,6-bisphosphate in the fasting response on other metabolic pathways has not been evaluated.

Objectives

The goal of this study is to determine how sustaining cardiac fructose-2,6-bisphosphate levels during fasting affects the metabolomic profile.

Methods

Control and transgenic mice expressing a constitutively active form of PFK-2 (GlycoHi) were subjected to either 12-h fasting or regular feeding. Animals (n = 4 per group) were used for whole-heart extraction, followed by gas chromatography–mass spectrometry metabolic profiling and multivariate data analysis.

Results

Principal component analysis displayed differences between Control and GlycoHi groups under both fasting and fed conditions while a clear response to fasting was observed only for Control animals. However, pathway analysis revealed that these smaller changes in the GlycoHi group were significantly associated with branched-chain amino acid (BCAA) metabolism (~ 40% increase in all BCAAs). Correlation network analysis demonstrated clear differences in response to fasting between Control and GlycoHi groups amongst most parameters. Notably, fasting caused an increase in network density in the Control group from 0.12 to 0.14 while the GlycoHi group responded oppositely (0.17–0.15).

Conclusions

Elevated cardiac PFK-2 activity during fasting selectively increases BCAAs levels and decreases global changes in metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The metabolomics data collected for this paper are submitted as supplementary file.

References

  • Angelovici, R., Batushansky, A., Deason, N., Gonzalez-Jorge, S., Gore, M. A., Fait, A., & DellaPenna, D. (2017). Network-guided GWAS improves identification of genes affecting free amino acids. Plant Physiology, 173, 872–886.

    Article  CAS  PubMed  Google Scholar 

  • Batushansky, A., Toubiana, D., & Fait, A. (2016) Correlation-based network generation, visualization, and analysis as a powerful tool in biological studies: A case study in cancer cell metabolism. BioMed Research International, 2016, 9.

    Article  Google Scholar 

  • Bockus, L. B., Matsuzaki, S., Vadvalkar, S. S., Young, Z. T., Giorgione, J. R., Newhardt, M. F., Kinter, M., & Humphries, K. M. (2017) Cardiac insulin signaling regulates glycolysis through phosphofructokinase 2 content and activity. Journal of the American Heart Association 6, e007159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Zhang, R., Song, Y., He, J., Sun, J., Bai, J., An, Z., Dong, L., Zhan, Q., & Abliz, Z. (2009). RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: finding potential biomarkers for breast cancer. Analyst, 134, 2003–2011.

    Article  CAS  PubMed  Google Scholar 

  • Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., Wishart, D. S., & Xia, J. (2018) MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Reserach, 46, W486–W494

    Article  Google Scholar 

  • Chouchani, E. T., Pell, V. R., Gaude, E., Aksentijevic, D., Sundier, S. Y., Robb, E. L., et al. (2014). Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature, 515, 431–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csardi, G., & Nepusz, T. (2006) The igraph software package for complex network research. InterJournal, 1695, 1–9.

    Google Scholar 

  • Cummings, N. E., Williams, E. M., Kasza, I., Konon, E. N., Schaid, M. D., Schmidt, B. A., et al. (2018). Restoration of metabolic health by decreased consumption of branched-chain amino acids. The Journal of Physiology, 596, 623–645.

    Article  CAS  PubMed  Google Scholar 

  • Depré, C., Rider, M. H., & Hue, L. (1998). Mechanisms of control of heart glycolysis. European Journal of Biochemistry, 258, 277–290.

    Article  PubMed  Google Scholar 

  • Donovan, E.L., Lopes, E.B.P., Batushansky, A., Kinter, M. & Griffin, T.M., (2018) Independent effects of dietary fat and sucrose content on chondrocyte metabolism and osteoarthritis pathology in mice. Disease Models & Mechanisms, 11, dmm034827.

    Article  Google Scholar 

  • Elo, L. L., Järvenpää, H., Orešič, M., Lahesmaa, R., & Aittokallio, T. (2007). Systematic construction of gene coexpression networks with applications to human T helper cell differentiation process. Bioinformatics, 23, 2096–2103.

    Article  CAS  PubMed  Google Scholar 

  • Feng Wang, L., Ramasamy, R., & Schaefer, S. (1999). Regulation of glycogen utilization in ischemic hearts after 24 hours of fasting. Cardiovascular Research, 42, 644–650.

    Article  CAS  Google Scholar 

  • Fernie, A. R., Trethewey, R. N., Krotzky, A. J., & Willmitzer, L. (2004). Metabolite profiling: from diagnostics to systems biology. Nature Reviews Molecular Cell Biology, 5, 763.

    Article  CAS  PubMed  Google Scholar 

  • Fukushima, A. (2013). DiffCorr: An R package to analyze and visualize differential correlations in biological networks. Gene, 518, 209–214.

    Article  CAS  PubMed  Google Scholar 

  • Gibb, A. A., Epstein, P. N., Uchida, S., Zheng, Y., McNally, L. A., Obal, D., et al. (2017). Exercise-induced changes in glucose metabolism promote physiological cardiac growth. Circulation, 136, 2144–2157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodpaster, B. H., & Sparks, L. M. (2017). Metabolic flexibility in health and disease. Cell Metabolism, 25, 1027–1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin, T. M., Humphries, K. M., Kinter, M., Lim, H.-Y., & Szweda, L. I. (2016). Nutrient sensing and utilization: Getting to the heart of metabolic flexibility. Biochimie, 124, 74–83.

    Article  CAS  PubMed  Google Scholar 

  • Horvath, S., & Dong, J. (2008). Geometric interpretation of gene coexpression network analysis. PLoS Computational Biology, 4, e1000117.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, Y., Zhou, M., Sun, H., & Wang, Y. (2011). Branched-chain amino acid metabolism in heart disease: An epiphenomenon or a real culprit? Cardiovascular Research, 90, 220–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins, C. M., Yang, J., Sims, H. F., & Gross, R. W. (2011). Reversible high affinity inhibition of phosphofructokinase-1 by acyl-CoA: a mechanism integrating glycolytic flux with lipid metabolism. Journal of Biological Chemistry, 286, 11937–11950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen, T. L., Kiersgaard, M. K., Sorensen, D. B., & Mikkelsen, L. F. (2013). Fasting of mice: A review. Laboratory Animals, 47, 225–240.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., & Barabasi, A. L. (2000). The large-scale organization of metabolic networks. Nature, 407, 651–654.

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokubun, E., Hirabara, S. M., Fiamoncini, J., Curi, R., & Haebisch, H. (2009). Changes of glycogen content in liver, skeletal muscle, and heart from fasted rats. Cell Biochemistry and Function, 27, 488–495.

    Article  CAS  PubMed  Google Scholar 

  • Kolwicz, S. C., & Tian, R. (2011). Glucose metabolism and cardiac hypertrophy. Cardiovascular Research, 90, 194–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruszynska, Y. T., McCormack, J. G., & McIntyre, N. (1991). Effects of glycogen stores and non-esterified fatty acid availability on insulin-stimulated glucose metabolism and tissue pyruvate dehydrogenase activity in the rat. Diabetologia, 34, 205–211.

    Article  CAS  PubMed  Google Scholar 

  • Li, T., Zhang, Z., Kolwicz, S. C. Jr., Abell, L., Roe, N. D., Kim, M., et al. (2017). Defective branched-chain amino acid catabolism disrupts glucose metabolism and sensitizes the heart to ischemia-reperfusion injury. Cell Metabolism, 25, 374–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 1, 387–396.

    Article  CAS  PubMed  Google Scholar 

  • Newsholme, P., Procopio, J., Lima, M. M., Pithon-Curi, T. C., & Curi, R. (2003). Glutamine and glutamate–their central role in cell metabolism and function. Cell Biochemistry & Function, 21, 1–9.

    Article  CAS  Google Scholar 

  • Perkins, A. D., & Langston, M. A. (2009). Threshold selection in gene co-expression networks using spectral graph theory techniques. BMC Bioinformatics, 10, S4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reichelt, M. E., Mellor, K. M., Curl, C. L., Stapleton, D., & Delbridge, L. M. D. (2013). Myocardial glycophagy—A specific glycogen handling response to metabolic stress is accentuated in the female heart. Journal of Molecular and Cellular Cardiology, 65, 67–75.

    Article  CAS  PubMed  Google Scholar 

  • Revelle, W. (2018) psych: Procedures for psychological, psychometric, and personality research. Retrived from https://CRAN.R-project.org/package=psych

  • Saito, K., Hirai, M. Y., & Yonekura-Sakakibara, K. (2008). Decoding genes with coexpression networks and metabolomics - ‘majority report by precogs’. Trends in Plant Science, 13, 36–43.

    Article  CAS  PubMed  Google Scholar 

  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao, D., Villet, O., Zhang, Z., Choi, S. W., Yan, J., Ritterhoff, J., Gu, H., Djukovic, D., Christodoulou, D., Kolwicz, S. C. Jr., Raftery, D., & Tian, R. (2018). Glucose promotes cell growth by suppressing branched-chain amino acid degradation. Nature Communications, 9, 2935.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen, X., Gong, X., Cai, Y., Guo, Y., Tu, J., Li, H., Zhang, T., Wang, J., Xue, F., & Zhu, Z.-J. (2016). Normalization and integration of large-scale metabolomics data using support vector regression. Metabolomics, 12, 89.

    Article  Google Scholar 

  • Spicer, R., Salek, R. M., Moreno, P., Cañueto, D., & Steinbeck, C. (2017). Navigating freely-available software tools for metabolomics analysis. Metabolomics, 13, 106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Steuer, R. (2006). Review: on the analysis and interpretation of correlations in metabolomic data. Briefings in Bioinformatics, 7, 151–158.

    Article  CAS  PubMed  Google Scholar 

  • Team, R. C. (2017) R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing

    Google Scholar 

  • Torkamani, A., Dean, B., Schork, N. J., & Thomas, E. A. (2010). Coexpression network analysis of neural tissue reveals perturbations in developmental processes in schizophrenia. Genome Research, 20, 403–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Schaftingen, E., Lederer, B., Bartrons, R., & Hers, H. G. (1982). A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. European Journal of Biochemistry, 129, 191–195.

    Article  PubMed  Google Scholar 

  • Voy, B. H., Scharff, J. A., Perkins, A. D., Saxton, A. M., Borate, B., Chesler, E. J., Branstetter, L. K., & Langston, M. A. (2006). Extracting gene networks for low-dose radiation using graph theoretical algorithms. PLoS Computational Biology, 2, e89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Hou, E., Wang, L., Wang, Y., Yang, L., Zheng, X., Xie, G., Sun, Q., Liang, M., & Tian, Z. (2015). Reconstruction and analysis of correlation networks based on GC–MS metabolomics data for young hypertensive men. Analytica Chimica Acta, 854, 95–105.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q., Donthi, R. V., Wang, J., Lange, A. J., Watson, L. J., Jones, S. P., & Epstein, P. N. (2008). Cardiac phosphatase-deficient 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase increases glycolysis, hypertrophy, and myocyte resistance to hypoxia. American Journal of Physiology-Heart and Circulatory Physiology, 294, H2889–H2897.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z., Ying, Z., Bosy-Westphal, A., Zhang, J., Schautz, B., Later, W., Heymsfield, S. B., & Müller, M. J. (2010). Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. The American Journal of Clinical Nutrition, 92, 1369–1377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440.

    Article  CAS  PubMed  Google Scholar 

  • Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag.

    Book  Google Scholar 

  • Zhang, B., Tian, Y., & Zhang, Z. (2014). Network biology in medicine and beyond. Circulation, 7, 536–547.

    PubMed  Google Scholar 

Download references

Funding

This work was supported by National Institutes of Health (NIH) grant R01HL125625, from the National Heart, Lung, and Blood Institute, with additional equipment support from the Oklahoma Center for Adult Stem Cell Research, a program of TSET.

Author information

Authors and Affiliations

Authors

Contributions

AB, SM, MN, TG and KH conceived and designed research. AB, SM, MN, MW and KH conducted experiments. AB, SM, TG and KH analyzed data. AB, TG and KH wrote the manuscript. All authors red and approved the manuscript.

Corresponding author

Correspondence to Kenneth M. Humphries.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batushansky, A., Matsuzaki, S., Newhardt, M.F. et al. GC–MS metabolic profiling reveals fructose-2,6-bisphosphate regulates branched chain amino acid metabolism in the heart during fasting. Metabolomics 15, 18 (2019). https://doi.org/10.1007/s11306-019-1478-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-019-1478-5

Keywords

Navigation