Skip to main content

Juice Index: an integrated Sauvignon blanc grape and wine metabolomics database shows mainly seasonal differences

Abstract

Introduction

Although Sauvignon Blanc (SB) grapes are cultivated widely throughout New Zealand, wines from the Marlborough region are most famous for their typical varietal combination of tropical and vegetal aromas. These wines differ in composition from season to season as well as among locations within the region, which makes the continual production of good quality wines challenging. Here, we developed a unique database of New Zealand SB grape juices and wines to develop tools to help winemakers to make blending decisions and assist in the development of new wine styles.

Methods

About 400 juices were collected from different regions in New Zealand over three harvest seasons (2011–2013), which were then fermented under controlled conditions using a commercial yeast strain Saccharomyces cerevisiae EC1118. Comprehensive metabolite profiling of these juices and wines by gas chromatography-mass spectrometry (GC-MS) was combined with their detailed oenological parameters and associated meteorological data.

Results

These combined metabolomics data clearly demonstrate that seasonal variation is more prominent than regional difference in both SB grape juices and wines, despite almost universal use of vineyard irrigation to mitigate seasonal rainfall and evapotranspiration differences, Additionally, we identified a group of juice metabolites that play central roles behind these variations, which may represent chemical signatures for juice and wine quality assessment.

Conclusion

This database is the first of its kind in the world to be available for the wider scientific community and offers potential as a predictive tool for wine quality and innovation when combined with mathematical modelling.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

Access to data and database can be requested by contacting the corresponding author.

References

  • Ali, K., Maltese, F., Toepfer, R., Choi, Y. H., & Verpoorte, R. (2011). Metabolic characterization of Palatinate German white wines according to sensory attributes, varieties, and vintages using NMR spectroscopy and multivariate data analyses. Journal of Biomolecular NMR, 49, 255–266.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Allen, T., Herbst-Johnstone, M., Girault, M., Butler, P., Logan, G., Jouanneau, S., et al. (2011). Influence of grape-harvesting steps on varietal thiol aromas in Sauvignon blanc wines. Journal of Agricultural and Food Chemistry, 59, 10641–10650.

    CAS  Article  PubMed  Google Scholar 

  • Anfang, N., Brajkovich, M., & Goddard, M. R. (2009). Co-fermentation with Pichia kluyveri increases varietal thiol concentrations in Sauvignon blanc. Australian Journal of Grape and Wine Research, 15, 1–8.

    CAS  Article  Google Scholar 

  • Arapitsas, P., Ugliano, M., Perenzoni, D., Angeli, A., Pangrazzi, P., & Mattivi, F. (2016). Wine metabolomics reveals new sulfonated products in bottled white wines, promoted by small amounts of oxygen. Journal of Chromatography A, 1429, 155–165.

    CAS  Article  PubMed  Google Scholar 

  • Arbulu, M., Sampedro, M. C., Gomez-Caballero, A., Goicolea, M. A., & Barrio, R. J. (2015). Untargeted metabolomic analysis using liquid chromatography quadrupole time-of-flight mass spectrometry for non-volatile profiling of wines. Analytica Chimica Acta, 858, 32–41.

    CAS  Article  PubMed  Google Scholar 

  • Aurich, M. K., Paglia, G., Rolfsson, O., Hrafnsdottir, S., Magnusdottir, M., Stefaniak, M. M., Palsson, B. O., Fleming, R. M. T., & Thiele, I. (2015). Prediction of intracellular metabolic states from extracellular metabolomic data. Metabolomics, 11, 603–619.

    CAS  Article  PubMed  Google Scholar 

  • Baidoo, E. E. K., Benke, P. I., & Keasling, J. D. (2012). Mass spectrometry-based microbial metabolomics. Methods in Molecular Biology, 215–278.

  • Bavaresco, L., De Rosso, M., Gudiman, M., Morreale, G., & Flamini, R. (2016). Polyphenol metabolomics of twenty Italian red grape varieties. In J. M. Aurand (Ed.), 39th World Congress of Vine and Wine. Cedex A: E D P Sciences.

    Google Scholar 

  • Beckner Whitener, M. E., Stanstrup, J., Panzeri, V., Carlin, S., Divol, B., Du Toit, M., & Vrhovsek, U. (2016). Untangling the wine metabolome by combining untargeted SPME–GCxGC-TOF-MS and sensory analysis to profile Sauvignon blanc co-fermented with seven different yeasts. Metabolomics, 12, 53.

    Article  Google Scholar 

  • Benkwitz, F., Tominaga, T., Kilmartin, P. A., Lund, C., Wohlers, M., & Nicolau, L. (2012). Identifying the chemical composition related to the distinct aroma characteristics of New Zealand Sauvignon blanc wines. American Journal of Enology and Viticulture, 63, 62–72.

    CAS  Article  Google Scholar 

  • Bennett, J. S., Gregan, S. M., & Jordan, B. (2013). The influence of vineyard and fruit exposure on the accumulation of methoxypyrazines in Marlborough Sauvignon blanc grapes. In 15th Australian Wine Industry Technical Conference. Sydney, New South Wales.

  • Bino, R. J., Hall, R. D., Fiehn, O., Kopka, J., Saito, K., Draper, J., et al. (2004). Potential of metabolomics as a functional genomics tool. Trends in Plant Science, 9, 418–425.

    CAS  Article  PubMed  Google Scholar 

  • Bramley, R. G. V., Trought, M. C. T., & Praat, J. P. (2011). Vineyard variability in Marlborough, New Zealand: Characterising variation in vineyard performance and options for the implementation of Precision Viticulture. Australian Journal of Grape and Wine Research, 17, 72–78.

    Article  Google Scholar 

  • Cakir, T., Efe, C., Dikicioglu, D., Hortacsu, A., Kirdar, B., & Oliver, S. G. (2007). Flux balance analysis of a genome-scale yeast model constrained by exometabolomic data allows metabolic system identification of genetically different strains. Biotechnology Progress, 23, 320–326.

    CAS  Article  PubMed  Google Scholar 

  • Capone, D. L., Pardon, K. H., Cordente, A. G., & Jeffery, D. W. (2011). Identification and quantitation of 3-S-cysteinylglycinehexan-1-ol (Cysgly-3-MH) in Sauvignon blanc grape juice by HPLC-MS/MS. Journal of Agricultural and Food Chemistry, 59, 11204–11210.

    CAS  Article  PubMed  Google Scholar 

  • Capone, D. L., Ristic, R., Pardon, K. H., & Jeffery, D. W. (2015). Simple quantitative determination of potent thiols at ultratrace levels in wine by derivatization and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis. Analytical Chemistry, 87, 1226–1231.

    CAS  Article  PubMed  Google Scholar 

  • Casu, F., Pinu, F. R., Fedrizzi, B., Greenwood, D. R., & Villas-Boas, S. G. (2016). The effect of linoleic acid on the Sauvignon blanc fermentation by different wine yeast strains. Fems Yeast Research, 16, 9.

    Article  Google Scholar 

  • Creydt, M., & Fischer, M. (2017). Plant metabolomics: Maximizing metabolome coverage by optimizing mobile phase additives for nontargeted mass spectrometry in positive and negative electrospray ionization mode. Analytical Chemistry, 89, 10474–10486.

    CAS  Article  PubMed  Google Scholar 

  • Deed, R. C., Fedrizzi, B., & Gardner, R. C. (2017). Influence of fermentation temperature, yeast strain, and grape juice on the aroma chemistry and sensory profile of Sauvignon blanc wines. Journal of Agricultural and Food Chemistry, 65, 8902–8912.

    CAS  Article  PubMed  Google Scholar 

  • Des Gachons, C. P., Van Leeuwen, C., Tominaga, T., Soyer, J. P., Gaudillère, J. P., & Dubourdieu, D. (2005). Influence of water and nitrogen deficit on fruit ripening and aroma potential of Vitis vinifera L cv Sauvignon blanc in field conditions. Journal of the Science of Food and Agriculture, 85, 73–85.

    Article  Google Scholar 

  • Dubourdieu, D., Tominaga, T., Masneuf, I., Gachons, D., C.P. and Murat, M. L. (2006). The role of yeasts in grape flavor development during fermentation: The example of Sauvignon blanc. American Journal of Enology and Viticulture, 57, 81–88.

    CAS  Google Scholar 

  • Dyar, K. A., & Eckel-Mahan, K. L. (2017) Circadian metabolomics in time and space. Frontiers in Neuroscience 11.

  • Flamini, R., De Rosso, M., De Marchi, F., Dalla Vedova, A., Panighel, A., Gardiman, M., & Bavaresco, L. (2017) Study of grape metabolomics by suspect screening analysis. In Pinto, M. (Ed), Ix international symposium on grapevine physiology and biotechnology. Int Soc Horticultural Science, Leuven 1 (pp. 329–335).

  • Frolkis, A., Knox, C., Lim, E., Jewison, T., Law, V., Hau, D. D., et al. (2009). SMPDB: The small molecule pathway database. Nucleic Acids Research, 38, D480–D487.

    Article  PubMed  PubMed Central  Google Scholar 

  • Granucci, N., Pinu, F. R., Han, T. L., & Villas-Boas, S. G. (2015). Can we predict the intracellular metabolic state of a cell based on extracellular metabolite data? Molecular Biosystems, 11, 3297–3304.

    CAS  Article  PubMed  Google Scholar 

  • Green, J. A., Parr, W. V., Breitmeyer, J., Valentin, D., & Sherlock, R. (2011). Sensory and chemical characterisation of Sauvignon blanc wine: Influence of source of origin. Food Research International, 44, 2788–2797.

    CAS  Article  Google Scholar 

  • Greven, M. M., Bennett, J. S., & Neal, S. M. (2014). The influence of retained node number on Sauvignon blanc grapevine vegetative growth and yield. Australian Journal of Grape and Wine Research, 20, 263–271.

    Article  Google Scholar 

  • Greven, M. M., Green, S., Neal, S., Clothier, B., Neal, M., Dryden, G., & Davidson, P. (2004). Regulated Deficit Irrigation (RDI) to save water and improve Sauvignon Blanc quality? Water Science & Technology, 51, 9–17.

    Article  Google Scholar 

  • Greven, M. M., Hall, A., Neal, S. M., & Bennett, J. S. (2015). The influence of retained node number on Sauvignon blanc grapevine phenology in cool climate viticulture. Australian Journal of Grape and Wine Research, 21, 290–301.

    Article  Google Scholar 

  • Greven, M. M., Raw, V., & West, B. A. (2009). Effects of timing of water stress on yield and berry size. Water Science and Technology, 60, 1249–1255.

    CAS  Article  PubMed  Google Scholar 

  • Grose, C. H., Martin, D. J., Stuart, L., Albright, A., & McLachlan, A. R. G. (2016) Grape harvest time and processing method can be used to manipulate ‘Sauvignon Blanc’ wine style. Acta Horticulturae, 139–145.

  • Guo, A. C., Jewison, T., Wilson, M., Liu, Y., Knox, C., Djoumbou, Y., et al. (2013). ECMDB: the E. coli metabolome database. Nucleic Acids Research, 41, D625–D630.

    CAS  Article  PubMed  Google Scholar 

  • Hayton, S., Maker, G. L., Mullaney, I., & Trengove, R. D. (2017). Untargeted metabolomics of neuronal cell culture: A model system for the toxicity testing of insecticide chemical exposure. Journal of Applied Toxicology, 37, 1481–1492.

    CAS  Article  PubMed  Google Scholar 

  • Herbst-Johnstone, M., Nicolau, L., & Kilmartin, P. A. (2011). Stability of varietal thiols in commercial Sauvignon blanc wines. American Journal of Enology and Viticulture, 62, 495–502.

    CAS  Article  Google Scholar 

  • Huang, X., Zeng, J., Zhou, L. N., Hu, C. X., Yin, P. Y., & Lin, X. H. (2016). A new strategy for analyzing time-series data using dynamic networks: Identifying prospective biomarkers of hepatocellular carcinoma. Scientific Reports, 6, 11.

    Article  Google Scholar 

  • Iland, P., Bruer, N., & Wilkes, E. (2004). Chemical analysis of grapes and wine: Techniques and concepts.

  • Imre, S. P., Kilmartin, P. A., Rutan, T., Mauk, J. L., & Nicolau, L. (2012). Influence of soil geochemistry on the chemical and aroma profiles of Pinot noir wines. Journal of Food, Agriculture and Environment, 10, 280–288.

    CAS  Google Scholar 

  • Jewison, T., Knox, C., Neveu, V., Djoumbou, Y., Guo, A. C., Lee, J., et al. (2012). YMDB: The yeast metabolome database. Nucleic Acids Research, 40, D815–D820.

    CAS  Article  PubMed  Google Scholar 

  • Jouanneau, S., Weaver, R. J., Nicolau, L., Herbst-Johnstone, M., Benkwitz, F., & Kilmartin, P. A. (2012). Subregional survey of aroma compounds in marlborough sauvignon blanc wines. Australian Journal of Grape and Wine Research, 18, 329–343.

    CAS  Article  Google Scholar 

  • Khakimov, B., Rasmussen, M. A., Kannangara, R. M., Jespersen, B. M., Munck, L., & Engelsen, S. B. (2017) From metabolome to phenotype: GC-MS metabolomics of developing mutant barley seeds reveals effects of growth, temperature and genotype. Scientific Reports 7.

  • King, E. S., Kievit, R. L., Curtin, C., Swiegers, J. H., Pretorius, I. S., Bastian, S. E. P., & Francis, I. L. (2010). The effect of multiple yeasts co-inoculations on Sauvignon Blanc wine aroma composition, sensory properties and consumer preference. Food Chemistry, 122, 618–626.

    CAS  Article  Google Scholar 

  • Kobayashi, H., Suzuki, S., & Takayanagi, T. (2011). Correlations between climatic conditions and berry composition of ‘Koshu’ (Vitis vinifera) grape in Japan. Journal of the Japanese Society for Horticultural Science, 80, 255–267.

    Article  Google Scholar 

  • Kwasniewski, M. T., Vanden Heuvel, J. E., Pan, B.S. and Sacks, G. L. (2010). Timing of cluster light environment manipulation during grape development affects C13 norisoprenoid and carotenoid concentrations in riesling. Journal of Agricultural and Food Chemistry, 58, 6841–6849.

    CAS  Article  PubMed  Google Scholar 

  • Lei, Y. J., Xie, S., Guan, X. Q., Song, C. Z., Zhang, Z. W., & Meng, J. F. (2018). Methoxypyrazines biosynthesis and metabolism in grape: A review. Food Chemistry, 245, 1141–1147.

    CAS  Article  PubMed  Google Scholar 

  • Lund, C. M., Thompson, M. K., Benkwitz, F., Wohler, M. W., Triggs, C. M., Gardner, R., et al. (2009). New Zealand Sauvignon blanc distinct flavor characteristics: Sensory, chemical, and consumer aspects. American Journal of Enology and Viticulture, 60, 1–12.

    CAS  Google Scholar 

  • Martin, D., Grose, C., Fedrizzi, B., Stuart, L., Albright, A., & McLachlan, A. (2016). Grape cluster microclimate influences the aroma composition of Sauvignon blanc wine. Food Chemistry, 210, 640–647.

    CAS  Article  PubMed  Google Scholar 

  • Mendes, I., Sanchez, I., Franco-Duarte, R., Camarasa, C., Schuller, D., Dequin, S., & Sousa, M. J. (2017). Integrating transcriptomics and metabolomics for the analysis of the aroma profiles of Saccharomyces cerevisiae strains from diverse origins. Bmc Genomics, 18, 13.

    Article  Google Scholar 

  • Mo, M. L., Palsson, B. O., & Herrgard, M. J. (2009). Connecting extracellular metabolomic measurements to intracellular flux states in yeast. Bmc Systems Biology, 3, 17.

    Article  Google Scholar 

  • Paglia, G., Williams, J. P., Menikarachchi, L., Thompson, J. W., Tyldesley-Worster, R., Halldorsson, S., et al. (2014). Ion mobility derived collision cross sections to support metabolomics applications. Analytical Chemistry, 86, 3985–3993.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Parker, A. K., de Cortazar-Atauri, I. G., van Leeuwen, C., & Chuine, I. (2011). General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Australian Journal of Grape and Wine Research, 17, 206–216.

    Article  Google Scholar 

  • Parr, W. V., Green, J. A., White, K. G., & Sherlock, R. R. (2007). The distinctive flavour of New Zealand Sauvignon blanc: Sensory characterisation by wine professionals. Food Quality and Preference, 18, 849–861.

    Article  Google Scholar 

  • Parr, W. V., Schlich, P., Theobald, J. C., & Harsch, M. J. (2013). Association of selected viniviticultural factors with sensory and chemical characteristics of New Zealand Sauvignon blanc wines. Food Research International, 53, 464–475.

    CAS  Article  Google Scholar 

  • Pereira, G. E., Gaudillere, J.-P., van Leeuwen, C., Hilbert, G., Maucourt, M., Deborde, C., et al. (2006). 1H NMR metabolite fingerprints of grape berry: Comparison of vintage and soil effects in Bordeaux grapevine growing areas. Analytica Chimica Acta, 563, 346–352.

    CAS  Article  Google Scholar 

  • Pinu, F. R. (2018) Grape and wine metabolomics to develop new insights using untargeted and targeted approaches. Fermentation 4, 92.

    Article  Google Scholar 

  • Pinu, F. R., de Carvalho-Silva, S., Uetanabaro, A. P. T., & Villas-Boas, S. G. (2016). Vinegar metabolomics: An explorative study of commercial balsamic vinegars using Gas Chromatography-Mass Spectrometry. Metabolites, 6, 15.

    Article  Google Scholar 

  • Pinu, F. R., Edwards, P. J. B., Gardner, R. C., & Villas-Boas, S. G. (2014b). Nitrogen and carbon assimilation by Saccharomyces cerevisiae during Sauvignon blanc juice fermentation. FEMS Yeast Research, 14, 1206–1222.

    CAS  Article  PubMed  Google Scholar 

  • Pinu, F. R., Edwards, P. J. B., Jouanneau, S., Kilmartin, P. A., Gardner, R. C., & Villas-Boas, S. G. (2014a). Sauvignon blanc metabolomics: Grape juice metabolites affecting the development of varietal thiols and other aroma compounds in wines. Metabolomics, 10, 556–573.

    CAS  Article  Google Scholar 

  • Pinu, F. R., Jouanneau, S., Nicolau, L., Gardner, R. C., & Villas-Boas, S. G. (2012). Concentrations of the volatile thiol 3-mercaptohexanol in Sauvignon blanc wines: No correlation with juice precursors. American Journal of Enology and Viticulture, 63, 407–412.

    CAS  Article  Google Scholar 

  • Roland, A., Schneider, R., Guernevé, C. L., Razungles, A., & Cavelier, F. (2010). Identification and quantification by LC-MS/MS of a new precursor of 3-mercaptohexan-1-ol (3MH) using stable isotope dilution assay: Elements for understanding the 3MH production in wine. Food Chemistry, 121, 847–855.

    CAS  Article  Google Scholar 

  • Roullier-Gall, C., Witting, M., Tziotis, D., Ruf, A., Gougeon, R. D., & Schmitt-Kopplin, P. (2015). Integrating analytical resolutions in non-targeted wine metabolomics. Tetrahedron, 71, 2983–2990.

    CAS  Article  Google Scholar 

  • Sadras, V. O., & Petrie, P. R. (2011). Climate shifts in south-eastern Australia: Early maturity of Chardonnay, Shiraz and Cabernet Sauvignon is associated with early onset rather than faster ripening. Australian Journal of Grape and Wine Research, 17, 199–205.

    Article  Google Scholar 

  • Schueuermann, C., Khakimov, B., Engelsen, S. B., Bremer, P., & Silcock, P. (2016). GC-MS metabolite profiling of extreme southern pinot noir wines: Effects of vintage, barrel maturation, and fermentation dominate over vineyard site and clone selection. Journal of Agricultural and Food Chemistry, 64, 2342–2351.

    CAS  Article  PubMed  Google Scholar 

  • Smart, K. F., Aggio, R. B. M., Van Houtte, J. R., & Villas-Bôas, S. G. (2010). Analytical platform for metabolome analysis of microbial cells using methyl chloroformate derivatization followed by gas chromatography-mass spectrometry. Nature Protocols, 5, 1709–1729.

    CAS  Article  PubMed  Google Scholar 

  • Smart, R. E. (2002). New world responses to old world terroir. Australian & New Zealand Wine Industry Journal, 17, 65–67.

    Google Scholar 

  • Spraul, M., Link, M., Schaefer, H., Fang, F., & Schuetz, B. (2015) Wine analysis to check quality and authenticity by fully-automated 1H-NMR. In BIO web of conferences (Vol. 5).

  • Swiegers, J. H., Capone, D. L., Pardon, K. H., Elsey, G. M., Sefton, M. A., Francis, I. L., & Pretorius, I. S. (2007). Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma. Yeast, 24, 561–574.

    CAS  Article  PubMed  Google Scholar 

  • Swiegers, J. H., Kievit, R. L., Siebert, T., Lattey, K. A., Bramley, B. R., Francis, I. L., et al. (2009). The influence of yeast on the aroma of Sauvignon Blanc wine. Food Microbiology, 26, 204–211.

    CAS  Article  PubMed  Google Scholar 

  • Tominaga, T., Murat, M. L., & Dubourdieu, D. (1998). Development of a method for analyzing the volatile thiols involved in the characteristic aroma of wines made from Vitis vinifera L. cv. Sauvignon Blanc. Journal of Agricultural and Food Chemistry, 46, 1044–1048.

    CAS  Article  Google Scholar 

  • Trought, M. C. T., Bennett, J. S., & Boldingh, H. L. (2011). Influence of retained cane number and pruning time on grapevine yield components, fruit composition and vine phenology of Sauvignon Blanc vines. Australian Journal of Grape and Wine Research, 17, 258–262.

    CAS  Article  Google Scholar 

  • Trought, M. C. T., & Bramley, R. G. V. (2011). Vineyard variability in Marlborough, New Zealand: Characterising spatial and temporal changes in fruit composition and juice quality in the vineyard. Australian Journal of Grape and Wine Research, 17, 79–89.

    Article  Google Scholar 

  • Tumanov, S., Zubenko, Y., Obolonkin, V., Greenwood, D. R., Shmanai, V., & Villas-Bôas, S. G. (2016). Calibration curve-free GC–MS method for quantitation of amino and non-amino organic acids in biological samples. Metabolomics, 12, 64.

    Article  Google Scholar 

  • van Leeuwen, C., & Destrac-Irvine, A. (2017). Modified grape composition under climate change conditions requires adaptations in the vineyard. Oeno One, 51, 147–154.

    Article  Google Scholar 

  • Villas-Bôas, S. G., Noel, S., Lane, G. A., Attwood, G., & Cookson, A. (2006). Extracellular metabolomics: A metabolic footprinting approach to assess fiber degradation in complex media. Analytical Biochemistry, 349, 297–305.

    Article  PubMed  Google Scholar 

  • Vondras, A. M., Commisso, M., Guzzo, F., & Deluc, L. G. (2017). Metabolite profiling reveals developmental inequalities in Pinot Noir berry tissues late in ripening. Frontiers in Plant Science, 8, 14.

    Article  Google Scholar 

  • Winegrowers, N. Z. (2017) Annual Report, 2017.

  • Wishart, D. S. (2008). Metabolomics: Applications to food science and nutrition research. Trends in Food Science & Technology, 19, 482–493.

    CAS  Article  Google Scholar 

  • Wishart, D. S., Jewison, T., Guo, A. C., Wilson, M., Knox, C., Liu, Y., et al. (2013). HMDB 3.0-The human metabolome database in 2013. Nucleic Acids Research, 41, D801–D807.

    CAS  Article  PubMed  Google Scholar 

  • Wishart, D. S., Mandal, R., Stanislaus, A., & Ramirez-Gaona, M. (2016). Cancer metabolomics and the human metabolome database. Metabolites, 6, 17.

    Article  Google Scholar 

  • Xia, J., Sinelnikov, I. V., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Research, 43, W251–W257.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Yamamoto, H., Yamaji, H., Abe, Y., Harada, K., Waluyo, D., Fukusaki, E., et al. (2009). Dimensionality reduction for metabolome data using PCA, PLS, OPLS, and RFDA with differential penalties to latent variables. Chemometrics and Intelligent Laboratory Systems, 98, 136–142.

    CAS  Article  Google Scholar 

  • Zarate, E., Boyle, V., Rupprecht, U., Green, S., Villas-Boas, S. G., Baker, P., & Pinu, F. R. (2017) Fully automated trimethylsilyl (TMS) derivatisation protocol for metabolite profiling by GC-MS. Metabolites 7, 1.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank all the wine companies for their collaboration in this work. We are grateful to all the people involved from Goddard lab, University of Auckland (UoA) and from Plant and Food Research Ltd (PFR), Blenheim during the sample collection. We thank the Centre for Genomics Proteomics and Metabolomics (CGPM), UoA for giving us access to the GC-MS instrumentation. Acknowledgement is also due to Sharlene Haycock (PFR), Elizabeth MacKenzie (UoA), Erica Zarate (UoA) and Francesca Casu (UoA) for their help with juice and wine analysis. We also thank PFR’s business managers, Claire Hall, Deborah Tod and Megan Jones for their help with the project management. We are also thankful to Warrick Nelson, Andrew McLachlan and Science Publications team of PFR for their comments on the manuscript.

Funding

This project was part of Sauvignon blanc II programme funded by the New Zealand Ministry of Business, Innovation and Employment (MBIE), New Zealand Winegrowers Inc and Plant and Food Research Ltd (PFR) (contract C11X1005).

Author information

Authors and Affiliations

Authors

Contributions

The project was conceived as part of Sauvignon blanc II programme and RH was the milestone leader. MG organised and supervised the grape juice sample collection with the help from VR. CG and LS made all the wines. FP and ST carried out metabolomics analysis (including data mining) at SVB’s laboratory at the University of Auckland. AA determined the oenological properties of grape juices and wines. MG, VR and FP collated all the data. FP analysed the data. FP and MG wrote the manuscript. All the authors revised and/or agreed on the final contents of the manuscript.

Corresponding author

Correspondence to Farhana R. Pinu.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4961 KB)

Supplementary material 2 (CSV 21 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pinu, F.R., Tumanov, S., Grose, C. et al. Juice Index: an integrated Sauvignon blanc grape and wine metabolomics database shows mainly seasonal differences. Metabolomics 15, 3 (2019). https://doi.org/10.1007/s11306-018-1469-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-018-1469-y

Keywords

  • Seasonal difference
  • Aroma compounds
  • Mass spectrometry
  • Vineyard management
  • Winemaking
  • Terroir
  • Chemical signature