Metabolic fingerprinting analysis of oil palm reveals a set of differentially expressed metabolites in fatal yellowing symptomatic and non-symptomatic plants

Abstract

Introduction

Oil palm (E. guineensis), the most consumed vegetable oil in the world, is affected by fatal yellowing (FY), a condition that can lead to the plant’s death. Although studies have been performed since the 1980s, including investigations of biotic and abiotic factors, FY’s cause remains unknown and efforts in researches are still necessary.

Objectives

This work aims to investigate the metabolic expression in plants affected by FY using an untargeted metabolomics approach.

Method

Metabolic fingerprinting analysis of oil palm leaves was performed using ultra high liquid chromatography–electrospray ionization–mass spectrometry (UHPLC–ESI–MS). Chemometric analysis, using principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA), was applied to data analysis. Metabolites identification was performed by high resolution mass spectrometry (HRMS), MS/MS experiments and comparison with databases and literature.

Results

Metabolomics analysis based on MS detected more than 50 metabolites in oil palm leaf samples. PCA and PLS-DS analysis provided group segregation and classification of symptomatic and non-symptomatic FY samples, with a great external validation of the results. Nine differentially expressed metabolites were identified as glycerophosphorylcholine, arginine, asparagine, apigenin 6,8-di-C-hexose, tyramine, chlorophyllide, 1,2-dihexanoyl-sn-glycero-3-phosphoethanolamine, proline and malvidin 3-glucoside-5-(6″-malonylglucoside). Metabolic pathways and biological importance of those metabolites were assigned.

Conclusion

Nine metabolites were detected in a higher concentration in non-symptomatic FY plants. Seven are related to stress factors i.e. plant defense and nutrient absorption, which can be affected by the metabolic depression of these compounds. Two of those metabolites (glycerophosphorylcholine and 1,2-dihexanoyl-sn-glycero-3-phosphoethanolamine) are presented as potential biomarkers, since they have no known direct relation to plant stress.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Adapted from KEGG.

References

  1. Abdelnur, P. V., Caldana, C., & Martins, M. C. M. (2014). Metabolomics applied in bioenergy. Chemical and Biological Technologies in Agriculture, 1, 22. https://doi.org/10.1186/s40538-014-0022-0.

    CAS  Article  Google Scholar 

  2. Acevedo, J. C., Hernandez, J. A., Valdes, C. F., & Khanal, S. K. (2015). Analysis of operating costs for producing biodiesel from palm oil at pilot-scale in Colombia. Bioresource Technology, 188, 117–123. https://doi.org/10.1016/j.biortech.2015.01.071.

    CAS  Article  PubMed  Google Scholar 

  3. Alcázar, R., Altabella, T., Marco, F., Bortolotti, C., Reymond, M., Koncz, C., et al. (2010). Polyamines: Molecules with regulatory functions in plant abiotic stress tolerance. Planta, 231, 1237. https://doi.org/10.1007/s00425-010-1130-0.

    CAS  Article  PubMed  Google Scholar 

  4. Balendres, M. A., Nichols, D. S., Tegg, R. S., & Wilson, C. R. (2016). Metabolomes of potato root exudates: Compounds that stimulate resting spore germination of the soil-borne pathogen Spongospora subterranea. Journal of Agricultural and Food Chemistry, 64, 7466–7474. https://doi.org/10.1021/acs.jafc.6b03904.

    CAS  Article  PubMed  Google Scholar 

  5. Ballabio, D., & Consonni, V. (2013). Classification tools in chemistry. Part 1: Linear models. PLS-DA. Analytical Methods, 5, 3790–3798. https://doi.org/10.1039/c3ay40582f.

    CAS  Article  Google Scholar 

  6. Bennett, R. N., & Wallsgrove, R. M. (1994). Secondary metabolites in plant defence mechanisms. New Phytologist, 127, 617–633. https://doi.org/10.1111/j.1469-8137.1994.tb02968.x.

    CAS  Article  Google Scholar 

  7. Boari, A. J. (2008). Estudos realizados sobre o amarelecimento fatal do dendezeiro. 1st ed. Belém, PA: Embrapa Amazônia Oriental-Documentos (INFOTECA-E).

    Google Scholar 

  8. Bourgis, F., et al. (2011). Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proceedings of the National Academy of Sciences of the United States of America, 108, 12527–12532. https://doi.org/10.1073/pnas.1106502108.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Campos, C. G., et al. (2017). New protocol based on UHPLC-MS/MS for quantitation of metabolites in xylose-fermenting yeasts. Journal of the American Society for Mass Spectrometry. https://doi.org/10.1007/s13361-017-1786-9.

    Article  PubMed  Google Scholar 

  10. de Assis Costa, O. Y., Tupinambá, D. D., Bergmann, J. C., Barreto, C. C., & Quirino, B. F. (2018). Fungal diversity in oil palm leaves showing symptoms of Fatal Yellowing disease. PLoS One, 13(1), e0191884. https://doi.org/10.1371/journal.pone.0191884.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Degtyarenko, K., et al. (2008). ChEBI: A database and ontology for chemical entities of biological interest. Nucleic Acids Research, 36, D344–D350. https://doi.org/10.1093/nar/gkm791.

    CAS  Article  PubMed  Google Scholar 

  12. Di Sansebastiano, G. P., Fornaciari, S., Barozzi, F., Piro, G., & Arru, L. (2014). New insights on plant cell elongation: A role for acetylcholine. International Journal of Molecular Sciences, 15, 4565–4582. https://doi.org/10.3390/ijms15034565.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Dias, D. A., Urban, S., & Roessner, U. (2012). A historical overview of natural products in drug discovery. Metabolites, 2, 303–336. https://doi.org/10.3390/metabo2020303.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Domingos, P., Prado, A. M., Wong, A., Gehring, C., & Feijo, J. A. (2015). Nitric oxide: A multitasked signaling gas in plants. Molecular Plant Pathology, 8, 506–520. https://doi.org/10.1016/j.molp.2014.12.010.

    CAS  Article  Google Scholar 

  15. Duportet, X., Aggio, R. B. M., Carneiro, S., & Villas-Bôas, S. G. (2012). The biological interpretation of metabolomic data can be misled by the extraction method used. Metabolomics, 8, 410–421. https://doi.org/10.1007/s11306-011-0324-1.

    CAS  Article  Google Scholar 

  16. FAOSTAT. (2018). Food and agriculture organization of the United Nations. http://www.fao.org/faostat/en/. Accessed 9 Oct 2018.

  17. Fiehn, O. (2001). Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comparative and Functional Genomics, 2, 155–168. https://doi.org/10.1002/cfg.82.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Fiehn, O. (2002). Metabolomics—The link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171. https://doi.org/10.1023/a:1013713905833.

    CAS  Article  PubMed  Google Scholar 

  19. Fraire-Velázquez, S., & Balderas-Hernández, V. E. (2013). Abiotic stress in plants and metabolic responses. Intech. https://doi.org/10.5772/54859.

    Article  Google Scholar 

  20. Fu, Y., Liu, W., Zu, Y., Tong, M., Li, S., Yan, M., Efferth, T., & Luo, H. (2008). Enzyme assisted extraction of luteolin and apigenin from pigeonpea [Cajanuscajan (L.) Millsp.] leaves. Food Chemistry, 111, 508–512. https://doi.org/10.1016/j.foodchem.2008.04.003.

    CAS  Article  PubMed  Google Scholar 

  21. Gaufichon, L., Reisdorf-Cren, M., Rothstein, S. J., Chardon, F., & Suzuki, A. (2010). Biological functions of asparagine synthetase in plants. Plant Science, 179, 141–153. https://doi.org/10.1016/j.plantsci.2010.04.010.

    CAS  Article  Google Scholar 

  22. Gaufichon, L., Rothstein, S. J., & Suzuki, A. (2016). Asparagine metabolic pathways in Arabidopsis. Plant and Cell Physiology, 57, 75–689. https://doi.org/10.1093/pcp/pcv184.

    CAS  Article  Google Scholar 

  23. Giavalisco, P., et al. (2011). Elemental formula annotation of polar and lipophilic metabolites using C-13, N-15 and S-34 isotope labelling, in combination with high-resolution mass spectrometry. Plant Journal, 68, 364–376. https://doi.org/10.1111/j.1365-313X.2011.04682.x.

    CAS  Article  PubMed  Google Scholar 

  24. Glauser, G., Veyrat, N., Rochat, B., Wolfender, J.-L., & Turlings, T. (2013). Ultra-high pressure liquid chromatography-mass spectrometry for plant metabolomics: A systematic comparison of high-resolution quadrupole-time-of-flight and single stage Orbitrap mass spectrometers. Journal of Chromatography A, 1292, 151–159.

    CAS  Article  Google Scholar 

  25. Gowda, H., et al. (2014). Interactive XCMS online: Simplifying advanced metabolomic data processing and subsequent statistical analyses. Analytical Chemistry, 86, 6931–6939. https://doi.org/10.1021/ac500734c.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Grata, E., et al. (2009). Metabolite profiling of plant extracts by ultra-high-pressure liquid chromatography at elevated temperature coupled to time-of-flight mass spectrometry. Journal of Chromatography A, 1216, 5660–5668. https://doi.org/10.1016/j.chroma.2009.05.069.

    CAS  Article  PubMed  Google Scholar 

  27. Gromova, M., & Roby, C. (2010). Toward Arabidopsis thaliana hydrophilic metabolome: Assessment of extraction methods and quantitative 1H NMR. Physiologia Plantarum, 140, 111–127. https://doi.org/10.1111/j.1399-3054.2010.01387.x.

    CAS  Article  PubMed  Google Scholar 

  28. Gromski, P. S., Xu, Y., Correa, E., Ellis, D. I., Turner, M. L., & Goodacre, R. (2014). A comparative investigation of modern feature selection and classification approaches for the analysis of mass spectrometry data. Analytica Chimica Acta, 829, 1–8. https://doi.org/10.1016/j.aca.2014.03.039.

    CAS  Article  PubMed  Google Scholar 

  29. Guillet, G., & De Luca, V. (2005). Wound-inducible biosynthesis of phytoalexin hydroxycinnamic acid amides of tyramine in tryptophan and tyrosine decarboxylase transgenic tobacco lines. Plant Physiology, 137, 692–699. https://doi.org/10.1104/pp.104.050294.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Gupta, K., Dey, A., & Gupta, A. (2013). Plant polyamines in abiotic stress responses. Acta Physiol Plant, 35, 2015–2036. https://doi.org/10.1007/s11738-013-1239.

    CAS  Article  Google Scholar 

  31. Hare, P. D., Cress, W. A., & Van Staden, J. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant, Cell & Environment, 21, 535–553. https://doi.org/10.1046/j.1365-3040.1998.00309.x.

    CAS  Article  Google Scholar 

  32. Hu, X., Tanaka, A., & Tanaka, R. (2013). Simple extraction methods that prevent the artifactual conversion of chlorophyll to chlorophyllide during pigment isolation from leaf samples. Plant Methods, 9, 19. https://doi.org/10.1186/1746-4811-9-19.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Hussain, S. S., Muhammad, A., Ahmad, M., & Siddique, K. H. M. (2011). Polyamines: Natural and engineered abiotic and biotic stress tolerance in plants. Biotechnology Advances, 29, 300–311. https://doi.org/10.1016/j.biotechadv.2011.01.003.

    CAS  Article  PubMed  Google Scholar 

  34. Jorge, T. F., Rodrigues, J. A., Caldana, C., Schmidt, R., van Dongen, J. T., Thomas-Oates, J., & António, C. (2016). Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress. Mass Spectrometry Reviews, 35, 620–649. https://doi.org/10.1002/mas.21449.

    CAS  Article  PubMed  Google Scholar 

  35. Khan, T. A., Fariduddin, Q., & Yusuf, M. (2017). Low-temperature stress: Is phytohormones application a remedy? Environmental Science and Pollution Research, 24, 21574. https://doi.org/10.1007/s11356-017-9948-7.

    CAS  Article  PubMed  Google Scholar 

  36. Kim, H. K., Choi, Y. H., & Verpoorte, R. (2011). NMR-based plant metabolomics: Where do we stand, where do we go? Trends in Biotechnology, 29, 267–275. https://doi.org/10.1016/j.tibtech.2011.02.001.

    CAS  Article  PubMed  Google Scholar 

  37. Kind, T., & Fiehn, O. (2010). Advances in structure elucidation of small molecules using mass spectrometry. Bioanalytical Reviews, 2, 23–60. https://doi.org/10.1007/s12566-010-0015-9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kovinich, N., Kayanja, G., Chanoca, A., Otegui, M. S., & Grotewold, E. (2015). Abiotic stresses induce different localizations of anthocyanins in Arabidopsis. Plant Signaling & Behavior, 10, e1027850. https://doi.org/10.1080/15592324.2015.1027850.

    CAS  Article  Google Scholar 

  39. Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63, 1593–1608. https://doi.org/10.1093/jxb/err460.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Lea, P. J., Sodek, L., Parry, M. A. J., Shewry, P. R., & Halford, N. G. (2007). Asparagine in plants. Annals of Applied Biology, 150, 1–26. https://doi.org/10.1111/j.1744-7348.2006.00104.x.

    CAS  Article  Google Scholar 

  41. Lefèvre, I., Gratia, E., & Lutts, S. (2001). Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice (Oryza sativa). Plant Science, 161, 943–952. https://doi.org/10.1016/S0168-9452(01)00485-X.

    Article  Google Scholar 

  42. Liang, X., Zhang, L., Natarajan, S. K., & Becker, D. F. (2013). Proline mechanisms of stress survival. Antioxidants & Redox Signaling, 19, 998–1011. https://doi.org/10.1089/ars.2012.5074.

    CAS  Article  Google Scholar 

  43. Lotkowska, M. E., Tohge, T., Fernie, A. R., Xue, G. P., Balazadeh, S., & Mueller-Roeber, B. (2015). The Arabidopsis transcription factor MYB112 promotes anthocyanin formation during salinity and under high light stress. Plant Physiology, 169, 1862–1880. https://doi.org/10.1104/pp.15.00605.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Ma, X., He, D., Ru, X., Chen, Y., Cai, Y., Bruce, I. C., et al. (2012). Apigenin, a plant-derived flavone, activates transient receptor potential vanilloid 4 cation channel. British Journal of Pharmacology, 166, 349–358. https://doi.org/10.1111/j.1476-5381.2011.01767.x.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Mansour, M. (2000). Nitrogen containing compounds and adaptation of plants to salinity stress. Biologia Plantarum, 43, 491. https://doi.org/10.1023/A:1002873531707.

    CAS  Article  Google Scholar 

  46. Martinez, G., Sarria, G. A., Torres, G. A., & Varón, F. (2010). Advances in research on Phytophthora Palmivora, causal agent of bud rot of oil palm in Colombia. Palmas, 31(1), 55–63.

    CAS  Article  Google Scholar 

  47. McEntyre, C. J., Lever, M., Chambers, S. T., MGeorge, P., Slow, S., Elmslie, J. L., et al. (2014). Variation of betaine, N,N-dimethylglycine, choline, glycerophosphorylcholine, taurine and trimethylamine-N-oxide in the plasma and urine of overweight people with type 2 diabetes over a two-year period. Annals of Clinical Biochemistry, 52, 352–360. https://doi.org/10.1177/0004563214545346.

    CAS  Article  PubMed  Google Scholar 

  48. Miean, K. H., & Mohamed, S. (2001). Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. Journal of Agricultural and Food Chemistry, 49, 3106–3112. https://doi.org/10.1021/jf000892m.

    CAS  Article  PubMed  Google Scholar 

  49. Murugesan, P., Aswathy, G. M., Sunil Kumar, K., Masilamani, P., Kumar, V., & Ravi, V. (2017). Oil palm (Elaeis guineensis) genetic resources for abiotic stress tolerance: A review. Indian Journal of Agricultural Sciences, 171, 12–17.

    Google Scholar 

  50. Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8, 199. https://doi.org/10.1007/s10311-010-0297-8.

    CAS  Article  Google Scholar 

  51. Neuhofer, W., & Beck, F. X. (2006). Survival in hostile environments: Strategies of renal medullary cells. Physiology, 21, 171–180. https://doi.org/10.1152/physiol.00003.2006.

    CAS  Article  PubMed  Google Scholar 

  52. Noor Lida, H. M. D., Sundram, K., Siew, W. L., Aminah, A., & Mamot, S. (2002). TAG composition and solid fat content of palm oil, sunflower oil, and palm kernel olein belends before and after chemical interesterification. Journal of the American Oil Chemists’ Society, 79, 1137–1144. https://doi.org/10.1007/s11746-002-0617-0.

    Article  Google Scholar 

  53. Obata, T., & Fernie, A. R. (2012). The use of metabolomics to dissect plant responses to abiotic stresses. Cellular and Molecular Life Sciences, 69, 3225–3243. https://doi.org/10.1007/s00018-012-1091-5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., & Kanehisa, M. (1999). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 27, 29–34. https://doi.org/10.1093/nar/27.1.29.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Pant, B.-D., Pant, P., Erban, A., Huhman, D., Kopka, J., & Scheible, W.-R. (2015). Identification of primary and secondary metabolites with phosphorus status-dependent abundance in Arabidopsis, and of the transcription factor PHR1 as a major regulator of metabolic changes during phosphorus limitation. Plant, Cell & Environment, 38, 172–187. https://doi.org/10.1111/pce.12378.

    CAS  Article  Google Scholar 

  56. Pietta, P. G. (2000). Flavonoids as antioxidants. Journal of Natural Products, 63, 1035–1042. https://doi.org/10.1021/np9904509.

    CAS  Article  PubMed  Google Scholar 

  57. Putri, S. P., & Fukusaki, E. (2014). Mass spectrometry-based metabolomics—A practical guide. 1st edn, Boca Raton: CRC Press.

    Google Scholar 

  58. Qiao, W., & Fan, L. M. (2008). Nitric oxide signaling in plant responses to abiotic stresses. Journal of Integrative Plant Biology, 50, 1238–1246. https://doi.org/10.1111/j.1744-7909.2008.00759.x.

    CAS  Article  PubMed  Google Scholar 

  59. Ramakrishna, A., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, 6, 1720–1731. https://doi.org/10.4161/psb.6.11.17613.

    CAS  Article  Google Scholar 

  60. Rodrigues, M. D., Amblard, P., Barcelos, E., de Macedo, J. L., da Cunha, R. N., Tavares, A. M. (2007). Avaliação do estado nutricional do dendezeiro: Análise foliar (reformulada), Embrapa Amazônia Ocidental-Comunicado Técnico (INFOTECA-E).

  61. Rontein, D., Basset, G., & Hanson, A. D. (2002). Metabolic engineering of osmoprotectant accumulation in plants. Metabolic Engineering, 4, 49–56. https://doi.org/10.1006/mben.2001.0208.

    CAS  Article  PubMed  Google Scholar 

  62. Rozali, N., Yarmo, M., Idris, A., Kushairi, A., & Ramli, U. (2017). Metabolomics differentiation of oil palm (Elaeis guineensis Jacq.) spear leaf with contrasting susceptibility to Ganoderma boninense. Plant OMICS, 10, 45–52. https://doi.org/10.21475/poj.10.02.17.pne364.

    CAS  Article  Google Scholar 

  63. Santos Filho, P. R., Santos, B. R., Barbosa, S., Vieira, L. R., Freitas, N. C., Dias, D. F., et al. (2014). Growth curve, biochemical profile and phytochemical analyses in calli obtained from the procambium segments of Bacupari. Brazilian Archives of Biology and Technology, 57, 326–333. https://doi.org/10.1590/S1516-89132014005000008.

    CAS  Article  Google Scholar 

  64. Servillo, L., et al. (2017). Tyramine pathways in citrus plant defense: Glycoconjugates of tyramine and its N-methylated derivatives. Journal of Agricultural and Food Chemistry, 65, 892–899. https://doi.org/10.1021/acs.jafc.6b04423.

    CAS  Article  PubMed  Google Scholar 

  65. Shi, H., & Chan, Z. (2014). Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. Journal of Integrative Plant Biology, 56, 114–121. https://doi.org/10.1111/jipb.12128.

    CAS  Article  PubMed  Google Scholar 

  66. Shulaev, V., Cortes, D., Miller, G., & Mittler, R. (2008). Metabolomics for plant stress response. Physiologia Plantarum, 132, 199–208. https://doi.org/10.1111/j.1399-3054.2007.01025.x.

    CAS  Article  PubMed  Google Scholar 

  67. Sicher, R. C., & Barnaby, J. Y. (2012). Impact of carbon dioxide enrichment on the responses of maize leaf transcripts and metabolites to water stress. Physiologia Plantarum, 144, 238–253. https://doi.org/10.1111/j.1399-3054.2011.01555.x.

    CAS  Article  PubMed  Google Scholar 

  68. Slocum, R. D. (2005). Genes, enzymes and regulation of arginine biosynthesis in plants. Plant Physiology and Biochemistry, 43, 729–745.

    CAS  Article  Google Scholar 

  69. Smith, C. A., et al. (2005). METLIN—A metabolite mass spectral database. Therapeutic Drug Monitoring, 27, 747–751. https://doi.org/10.1097/01.ftd.0000179845.53213.39.

    CAS  Article  PubMed  Google Scholar 

  70. Smith, L. I. (2002). A tutorial on principal components analysis (1st ed.). Ithaca: Cornell University.

    Google Scholar 

  71. STATISTA. (2018). Statista - The portal for statistics. https://www.statista.com/. Accessed 9 Oct 2018.

  72. Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203, 32–43. https://doi.org/10.1111/nph.12797.

    Article  PubMed  Google Scholar 

  73. Tahir, N. I., Shaari, K., Abas, F., Parveez, G. K. A., Hashim, A. T., & Ramli, U. S. (2013). Identification of oil palm (Elaeis guineensis) spear leaf metabolites using mass spectrometry and neutral loss analysis. Journal of Oil Palm Research, 25, 72–83.

    CAS  Google Scholar 

  74. Tahir, N. I., Shaari, K., Abas, F., Parveez, G. K. A., Ishak, Z., & Ramli, U. S. (2012). Characterization of apigenin and luteolin derivatives from oil palm (Elaeis guineensis Jacq.) leaf using LC-ESI-MS/MS. Journal of Agricultural and Food Chemistry, 60, 11201–11210. https://doi.org/10.1021/jf303267e.

    CAS  Article  PubMed  Google Scholar 

  75. Tanaka, Y., Sasaki, N., & Ohmiya, A. (2008). Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids. The Plant Journal, 54, 733–749. https://doi.org/10.1111/j.1365-313X.2008.03447.x.

    CAS  Article  PubMed  Google Scholar 

  76. Tautenhahn, R., Patti, G. J., Rinehart, D., & Siuzdak, G. (2012). XCMS online: A web-based platform to process untargeted metabolomic data. Analytical Chemistry, 84, 5035–5039. https://doi.org/10.1021/ac300698c.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Tawaraya, K., Horie, R., Saito, S., Wagatsuma, T., Saito, K., & Oikawa, A. (2014a). Metabolite profiling of root exudates of common bean under phosphorus deficiency. Metabolites, 4, 599–611. https://doi.org/10.3390/metabo4030599.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. Tawaraya, K., Horie, R., Shinano, T., Wagatsuma, T., Saito, K., & Oikawa, A. (2014b). Metabolite profiling of soybean root exudates under phosphorus deficiency. Soil Science and Plant Nutrition, 60, 679–694. https://doi.org/10.1080/00380768.2014.945390.

    CAS  Article  Google Scholar 

  79. Tawaraya, K., et al. (2013). Metabolite profiling of shoot extracts, root extracts, and root exudates of rice plant under phosphorus deficiency. Journal of Plant Nutrition 36, 1138–1159 https://doi.org/10.1080/01904167.2013.780613.

    CAS  Article  Google Scholar 

  80. Tyagi, S., Raghvendra, U., Singh, T., Kalra, K., & Munjal (2010). Applications of metabolomics—A systematic study of the unique chemical fingerprints: An overview. International Journal of Pharmaceutical Sciences Review and Research, 3, 83–86.

    CAS  Google Scholar 

  81. Urano, K., Kurihara, Y., Seki, M., & Shinozaki, K. (2010). ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Current Opinion in Plant Biology, 13, 132–138. https://doi.org/10.1016/j.pbi.2009.12.006.

    CAS  Article  PubMed  Google Scholar 

  82. van der Rest, B., Boisson, A. M., Gout, E., Bligny, R., & Douce, R. (2002). Glycerophosphocholine metabolism in higher plant cells. Evidence of a new glyceryl-phosphodiester phosphodiesterase. Plant Physiology, 130, 244–255. https://doi.org/10.1104/pp.003392.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Vargas, L. H. G., et al. (2016). Metabolomics analysis of oil palm (Elaeis guineensis) leaf: Evaluation of sample preparation steps using UHPLC-MS/MS. Metabolomics. https://doi.org/10.1007/s11306-016-1100-z.

    Article  Google Scholar 

  84. Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: A review. Amino Acids, 35, 753. https://doi.org/10.1007/s00726-008-0061-6.

    CAS  Article  PubMed  Google Scholar 

  85. Vitavska, O., Edemir, B., & Wieczorek, H. (2016). Putative role of the H+/sucrose symporter SLC45A3 as an osmolyte transporter in the kidney. Archiv European Journal of Physiology, 468, 1353. https://doi.org/10.1007/s00424-016-1841-6.

    CAS  Article  Google Scholar 

  86. Vuckovic, D. (2012). Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry, 403, 1523–1548. https://doi.org/10.1007/s00216-012-6039-y.

    CAS  Article  PubMed  Google Scholar 

  87. Wimalasekera, R., Tebartz, F., & Scherer, G. F. E. (2011). Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Science, 181, 593–603. https://doi.org/10.1016/j.plantsci.2011.04.002.

    CAS  Article  PubMed  Google Scholar 

  88. Wu, H. F., et al. (2013). Recent developments in qualitative and quantitative analysis of phytochemical constituents and their metabolites using liquid chromatography-mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 72, 267–291. https://doi.org/10.1016/j.jpba.2012.09.004.

    CAS  Article  PubMed  Google Scholar 

  89. Xia, J., & Wishart, D. S. (2016). Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis current protocols in bioinformatics. New York: Wiley

    Google Scholar 

  90. Xia, J. G., Sinelnikov, I. V., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Research, 43, W251–W257. https://doi.org/10.1093/nar/gkv380.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. Zhao, D., & Tao, J. (2015). Recent advances on the development and regulation of flower color in ornamental plants. Frontiers in Plant Science, 6, 261. https://doi.org/10.3389/fpls.2015.00261.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Zhu, X. F., Wan, J. X., Sun, Y., Shi, Y. Z., Braam, J., Li, G. X., et al. (2014). Xyloglucan Endotransglucosylase-Hydrolase17 interacts with xyloglucan endotransglucosylase-hydrolase31 to confer xyloglucan endotransglucosylase action and affect aluminum sensitivity in Arabidopsis. Plant Physiology, 165, 1566–1574. https://doi.org/10.1104/pp.114.243790.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian Agricultural Research Corporation (EMBRAPA), the Federal Foundation for the Brazilian Research and Development (FINEP) and Coordination for the Improvement of Higher Education Personnel (CAPES) for the financial support; and Marborges Agroindustry S.A. for the E. guineensis leaves samples. The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The Grant (01.13.0315.02—DendePalm Project) for this study was awarded by the Brazilian Ministry of Science, Technology and Innovation (MCTI) via the Brazilian Innovation Agency (FINEP). The authors confirm that the funder had no influence over the study design, the content of article, or selection of this journal.

Author information

Affiliations

Authors

Contributions

PVA designed and JCRN/JAAR performed the experiments. JCRN, ALS and MVC derived the models and analyzed the data. LRV and MTSJ performed the biological interpretations. PVA and JCRN wrote the manuscript in consultation with MVC, ALS, LRV, CMR and MTSJ. All authors read and approved the manuscript.

Corresponding author

Correspondence to Patrícia Verardi Abdelnur.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain any studies with human and/or animal participants performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 546 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodrigues-Neto, J.C., Correia, M.V., Souto, A.L. et al. Metabolic fingerprinting analysis of oil palm reveals a set of differentially expressed metabolites in fatal yellowing symptomatic and non-symptomatic plants. Metabolomics 14, 142 (2018). https://doi.org/10.1007/s11306-018-1436-7

Download citation

Keywords

  • Metabolomics
  • Fatal yellowing
  • Oil palm
  • Chemometrics
  • High resolution mass spectrometry
  • Biomarkers