Skip to main content
Log in

High-resolution mass spectrometry metabolomics of grape chemical markers to reveal use of not-allowed varieties in the production of Amarone and Recioto wines

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Grape varieties allowed to produce Amarone della Valpolicella and Recioto DOCG wines are strictly regulated by their disciplinary of production. These are Corvina Veronese and Corvinone grapes, to a lesser extent also Rondinella can be used. The use of other varieties, is not allowed.

Objectives

To identify chemical markers suitable to reveal addition of two not allowed grape varieties to the Corvina/Corvinone blend, such as Primitivo or Negro Amaro.

Methods

The identification of the secondary metabolites of the four grape varieties was conducted by high-resolution mass spectrometry (HRMS) metabolomics. By using the signals of these metabolites the indexes able to identify the presence of Primitivo or Negro Amaro grapes in the Corvina/Corvinone 1:1 blend were calculated.

Results

Indexes of laricitrin (Lr), delphinidin (Dp), and petunidin (Pt) signals were effective to identify the use of 10% Primitivo, while α-terpineol pentosyl-hexoside and linalool pentosyl-hexoside reveal the presence of Negro Amaro in the grape blend.

Conclusions

Varietal markers useful to detect the presence of Primitivo and Negro Amaro in the grape blend were identified by HRMS metabolomics, a method suitable to check the identity of grapes on arrival at the winery, as well as the fermenting musts. The effectiveness of the identified markers in the final wines have to be confirmed. Potentially, a similar approach can be used to reveal analogous frauds performed on other high-quality wines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arapitsas, P., Della Corte, A., Gika, H., Narduzzi, L., & Mattivi, F. (2016a). Studying the effect of storage conditions on the metabolite content of red wine using HILIC LC–MS based metabolomics. Food Chemistry, 197, 1331–1340. https://doi.org/10.1016/j.foodchem.2015.09.084.

    Article  CAS  PubMed  Google Scholar 

  • Arapitsas, P., Ugliano, M., Perenzoni, D., Angeli, A., Pangrazzi, P., & Mattivi, F. (2016b). Wine metabolomics reveals new sulfonated products in bottled white wines, promoted by small amounts of oxygen. Journal of Chromatography A, 1429, 155–165. https://doi.org/10.1016/j.chroma.2015.12.010.

    Article  CAS  PubMed  Google Scholar 

  • Arbulu, M., Sampedro, M. C., Gómez-caballero, A., Goicolea, M. A., & Barrio, R. J. (2015). Untargeted metabolomic analysis using liquid chromatography quadrupole time-of-flight mass spectrometry for non-volatile profiling of wines. Analytica Chimica Acta, 858, 32–41. https://doi.org/10.1016/j.aca.2014.12.028.

    Article  CAS  PubMed  Google Scholar 

  • Cacho, J., Fernández, P., Ferreira, V., & Castells, J. E. (1992). Evolution of five anthocyanidin-3-glucosides in the skin of the tempranillo, moristel, and garnacha grape varieties and influence of climatological variables. American Journal of Enology and Viticulture, 43, 244–248.

    CAS  Google Scholar 

  • Carreno, J., Almela, L., Martinez, A., Fernández-López, J. A., & Fernández-Lopez, J. A. (1997). Chemotaxonomical classification of red table grapes based on anthocyanin profile and external colour. Lebensm.-Wiss.u.-Technol., 30, 259–265.

    Article  CAS  Google Scholar 

  • De Pascali, S. A., Coletta, A., Del Coco, L., Basile, T., Gambacorta, G., Fanizzi, F. P., et al. (2014). Viticultural practice and winemaking effects on metabolic profile of Negroamaro. Food Chemistry, 161, 112–119. https://doi.org/10.1016/j.foodchem.2014.03.128.

    Article  CAS  PubMed  Google Scholar 

  • De Rosso, M., Soligo, S., Panighel, A., Carraro, R., Dalla Vedova, A., Tomasi, D., & Flamini, R. (2016). Changes in grape polyphenols (V. vinifera L.) during post-harvest withering by high-resolution mass spectrometry: Raboso Piave vs Corvina. Journal of Mass Spectrometry, 51, 750–760. https://doi.org/10.1002/jms.3835.

    Article  CAS  PubMed  Google Scholar 

  • De Rosso, M., Tonidandel, L., Larcher, R., Nicolini, G., Ruggeri, V., Dalla Vedova, A., et al. (2012). Study of anthocyanic profiles of twenty-one hybrid grape varieties by liquid chromatography and precursor-ion mass spectrometry. Analytica Chimica Acta, 732, 120–129. https://doi.org/10.1016/j.aca.2011.10.045.

    Article  CAS  PubMed  Google Scholar 

  • Del Gaudio, S., & Nico, G. (1960). Primitivo. Principali vitigni da vino coltivati in Italia, 1.

  • Del Gaudio, S., & Panzera, C. (1960). Negro amaro. Principali vitigni da vino coltivati in Italia, 1.

  • Di Stefano, R., & Flamini, R. (2008). High performance liquid chromatography analysis of grape and wine polyphenols. In Hyphenated techniques in grape & wine chemistry (pp. 33–80). Hoboken: Wiley.

    Chapter  Google Scholar 

  • D. M. May, 7, 2004: pubblicato sulla Gazzetta Ufficiale n. 242 del 14 ottobre 2004.

  • D. M. March, 24, 2010a: Disciplinare di Produzione dei vini a Denominazione di Origine Controllata e Garantita (DOCG) “Amarone della Valpolicella”, approvato con D.M. 24.03.2010, Gazzetta Ufficiale n. 84–12.04.2010. Modificato con DM 07.03.2014, pubblicato sul sito ufficiale del Mipaaf Sezione Qualità e Sicurezza Vini DOP e IGP.

  • D. M. March 24, 2010b: Disciplinare di Produzione dei vini a Denominazione di Origine Controllata e Garantita (DOCG) “Recioto della Valpolicella”, approvato con D.M. 24.03.2010, Gazzetta Ufficiale n. 85–13.04.2010. Modificato con DM 30.11.2011, pubblicato sul sito ufficiale del Mipaaf Sezione Qualità e Sicurezza Vini DOP e IGP.

  • Downey, M. O., Harvey, J. S., & Robinson, S. P. (2003). Synthesis of flavonols and expression of flavonol synthase genes in the developing grape berries of Shiraz and Chardonnay (Vitis vinifera L.). Australian Journal of Grape and Wine Research, 9, 110–121.

    Article  CAS  Google Scholar 

  • Fernández-López, J. A., Almela, L., Muñoz, J. A., Hidalgo, V., & Carreño, J. (1998). Dependence between colour and individual anthocyanin content in ripening grapes. Food Research International, 31(9), 667–672. https://doi.org/10.1016/S0963-9969(99)00043-5.

    Article  Google Scholar 

  • Figueiredo-Gonzalez, M., Cancho-Grande, B., & Simal-Gandara, J. (2013). Evolution of colour and phenolic compounds during Garnacha Tintorera grape raisining. Food Chemistry, 141(3), 3230–3240. https://doi.org/10.1016/j.foodchem.2013.05.142.

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo-González, M., Martínez-Carballo, E., Cancho-Grande, B., Santiago, J. L., Martínez, M. C., & Simal-Gándara, J. (2012). Pattern recognition of three Vitis vinifera L. red grapes varieties based on anthocyanin and flavonol profiles, with correlations between their biosynthesis pathways. Food Chemistry, 130(1), 9–19. https://doi.org/10.1016/j.foodchem.2011.06.006.

    Article  CAS  Google Scholar 

  • Flamini, R., Dalla Vedova, A., & Calo, A. (2001). Study of the monoterpene contents of 23 accessions of Muscat grape: Correlation between aroma profile and variety. Rivista di Viticoltura di Enologia, 2(3), 35–49.

    Google Scholar 

  • Flamini, R., De Rosso, M., & Bavaresco, L. (2015). Study of grape polyphenols by liquid chromatography—High-resolution mass spectrometry (UHPLC/QTOF) and suspect screening analysis. Journal of Analytical Methods in Chemistry. https://doi.org/10.1155/2015/350259.

    Article  PubMed  PubMed Central  Google Scholar 

  • Flamini, R., De Rosso, M., De Marchi, F., Dalla Vedova, A., Panighel, A., Gardiman, M., et al. (2013). An innovative approach to grape metabolomics: Stilbene profiling by suspect screening analysis. Metabolomics, 9(6), 1243–1253. https://doi.org/10.1007/s11306-013-0530-0.

    Article  CAS  Google Scholar 

  • Flamini, R., De Rosso, M., Panighel, A., Dalla Vedova, A., De Marchi, F., & Bavaresco, L. (2014). Profiling of grape monoterpene glycosides (aroma precursors) by ultra-high performanceliquid chromatography-high resolution mass spectrometry (UHPLC/QTOF). Journal of Mass Spectrometry, 49(12), 1214–1222. https://doi.org/10.1002/jms.3441.

    Article  CAS  PubMed  Google Scholar 

  • Ghaste, M., Narduzzi, L., Carlin, S., Vrhovsek, U., Shulaev, V., & Mattivi, F. (2015). Chemical composition of volatile aroma metabolites and their glycosylated precursors that can uniquely differentiate individual grape cultivars. Food Chemistry, 188, 309–319. https://doi.org/10.1016/j.foodchem.2015.04.056.

    Article  CAS  PubMed  Google Scholar 

  • Heller, W., & Forkmann, G. (1988). Biosynthesis. In Harborne J. B. ed., The flavonoids: Advances in research since 1980 (pp. 399–425). London: Chapman and Hall

    Google Scholar 

  • Holmberg, L. (2010). Wine fraud. International Journal of Wine Research, 2(1), 105–113. https://doi.org/10.2147/IJWR.S14102.

    Article  Google Scholar 

  • Hong, Y. S. (2011). NMR-based metabolomics in wine science. Magnetic Resonance in Chemistry. https://doi.org/10.1002/mrc.2832.

    Article  PubMed  Google Scholar 

  • Jeong, S. T., Goto-Yamamoto, N., Hashizume, K., & Esaka, M. (2006). Expression of the flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase genes and flavonoid composition in grape (Vitis vinifera). Plant Science, 170, 61–69.

    Article  CAS  Google Scholar 

  • Lee, J. E., Hwang, G. S., Van Den Berg, F., Lee, C. H., & Hong, Y. S. (2009). Evidence of vintage effects on grape wines using 1H NMR-based metabolomic study. Analytica Chimica Acta, 648(1), 71–76. https://doi.org/10.1016/j.aca.2009.06.039.

    Article  CAS  PubMed  Google Scholar 

  • Mattivi, F., Guzzon, R., Vrhovsek, U., Stefanini, M., & Velasco, R. (2006). Metabolite profiling of grape: Flavonols and anthocyanins. Journal of Agricultural and Food Chemistry, 54(20), 7692–7702. https://doi.org/10.1021/jf061538c.

    Article  CAS  PubMed  Google Scholar 

  • Nasi, A., Ferranti, P., Amato, S., & Chianese, L. (2008). Identification of free and bound volatile compounds as typicalness and authenticity markers of non-aromatic grapes and wines through a combined use of mass spectrometric techniques. Food Chemistry, 110(3), 762–768. https://doi.org/10.1016/j.foodchem.2008.03.001.

    Article  CAS  Google Scholar 

  • Ortega-Regules, A., Romero-Cascales, I., López-Roca, J. M., Ros-García, J. M., & Gómez-Plaza, E. (2006). Anthocyanin fingerprint of grapes: Environmental and genetic variations. Journal of the Science of Food and Agriculture, 86(10), 1460–1467. https://doi.org/10.1002/jsfa.2511.

    Article  CAS  Google Scholar 

  • Pezet, R., Perret, C., Jean-Denis, J. B., Tabacchi, R., Gindro, K., & Viret, O. (2003). d-Viniferin, a resveratrol dehydrodimer: One of the major stilbenes synthesized by stressed grapevine leaves. Journal of Agricultural and Food Chemistry, 51, 5488–5492.

    Article  CAS  Google Scholar 

  • Rubert, J., Lacina, O., Fauhl-hassek, C., & Hajslova, J. (2014). Metabolic fingerprinting based on high-resolution tandem mass spectrometry: A reliable tool for wine authentication ? Analytical and Bioanalytical Chemistry, 406, 6791–6803. https://doi.org/10.1007/s00216-014-7864-y.

    Article  CAS  PubMed  Google Scholar 

  • Squadrito, M., Corona, O., Ansaldi, G., & Di Stefano, R. (2007). Possible relations between biosynthetic pathways of HCTA, flavonols and anthocyanins in grape berry skin. Rivista di viticoltura di enologia, 60(3), 59–70.

    CAS  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., Fan, T. W.-M., Fiehn, O., Goodacre, R., Griffin, J. L., Hankemeier, T., Hardym, N., Harnly, J., Higashi, R., Kopka, J., Lane, A. N., Lindon, J. C., Marriott, P., Nicholls, A. W., Reily, M. D., Thaden, J. J., & Viant, M. R. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221.

    Article  CAS  Google Scholar 

  • Tamborra, P., & Esti, M. (2010). Authenticity markers in Aglianico, Uva di Troia, Negroamaro and Primitivo grapes. Analytica Chimica Acta, 660(1–2), 221–226. https://doi.org/10.1016/j.aca.2009.11.014.

    Article  CAS  PubMed  Google Scholar 

  • Vaclavik, L., Lacina, O., Hajslova, J., & Zweigenbaum, J. (2011). The use of high performance liquid chromatography-quadrupole time-of-flight mass spectrometry coupled to advanced data mining and chemometric tools for discrimination and classification of red wines according to their variety. Analytica Chimica Acta, 685(1), 45–51. https://doi.org/10.1016/j.aca.2010.11.018.

    Article  CAS  PubMed  Google Scholar 

  • Versari, A., Laurie, V. F., Ricci, A., Laghi, L., & Parpinello, G. P. (2014). Progress in authentication, typification and traceability of grapes and wines by chemometric approaches. Food Research International, 60, 2–18. https://doi.org/10.1016/j.foodres.2014.02.007.

    Article  CAS  Google Scholar 

  • Villano, C., Lisanti, M. T., Gambuti, A., Vecchio, R., Moio, L., Frusciante, L., et al. (2017). Wine varietal authentication based on phenolics, volatiles and DNA markers: State of the art, perspectives and drawbacks Clizia. Food Control, 80, 1–10.

    Article  CAS  Google Scholar 

  • von Baer, D., Mardones, C., Gutierrez, L., Hofmann, G., Becerra, J., Hitschfeld, A., & Vergara, C. (2005). Varietal authenticity verification of Cabernet sauvignon, Merlot and Carmenere wines produced in Chile by their anthocyanin, flavonol and shikimic acid profiles. Bulletin de l’O.I.V., 887, 45–57.

    Google Scholar 

  • Xia, J., Mandal, R., Sinelnikov, I. V., Broadhurst, D., & Wishart, D. S. (2012). MetaboAnalyst 2.0-a comprehensive server for metabolomic data analysis. Nucleic Acids Research, 40, W127–W133.

    Article  CAS  Google Scholar 

  • Xia, J., & Wishart, D. S. (2016). Using MetaboAnalyst3.0 for comprehensive metabolomics data analysis. Current Protocols in Bioinformatics. https://doi.org/10.1002/cpbi.11.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Project Support tools for risk assessment in the agro-food chain, Ministero delle Politiche Agricole Alimentari e Forestali (DD.MM. n. 24267 17/11/2010, n. 13973 16/05/2012, n. 23790 12/11/2013, n. 24091 16/12/15).

Author information

Authors and Affiliations

Authors

Contributions

MDR performed the analyses and data acquisition. CMM performed the data interpretation, data analysis and wrote the paper. GG and ADV performed the experiments. RF conceived and designed the experiment and wrote the paper.

Corresponding author

Correspondence to Riccardo Flamini.

Ethics declarations

Accession number

Meta data and metabolite profiles associated with the research are available through the EBI MetaboLights database under the following accession number: MTBLS732.

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving animal and human rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Rosso, M., Mayr, C.M., Girardi, G. et al. High-resolution mass spectrometry metabolomics of grape chemical markers to reveal use of not-allowed varieties in the production of Amarone and Recioto wines. Metabolomics 14, 124 (2018). https://doi.org/10.1007/s11306-018-1415-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-018-1415-z

Keywords

Navigation