Skip to main content
Log in

Non-invasive nuclear magnetic resonance analysis of male and female embryo metabolites during in vitro embryo culture

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

In the past 20+ years, several studies of bovine embryo production showed how the ratio of male to female embryos changes if embryos are made in vivo or in vitro. It is known that in in vitro systems, the sex ratio is in favor of males when there are high levels of glucose, and favors females when the principal energetic substrate is one other than glucose, like citrate.

Objectives

The aim of this study was to evaluate the embryo metabolism during three important periods of in vitro development: the early development (from day 1 until day 3), the middle of culture (day 3 until day 5), and later development (day 5 until day 7).

Methods

To obtain this information we evaluated the spent medium from each time period by 1H NMR.

Results

Our results confirm that embryo metabolism is different between sexes. The new information obtained by identifies markers that we can use to predict the embryo sex.

Conclusion

These results open a new, non-invasive method to evaluate sex of the embryos before the transfer. In the first period of embryo culture, valine concentration is good indicator (66.7% accurate), while in the last phase of culture, pyruvate depletion is the best marker (64% accurate) to evaluate the sex of the embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alomar, M., Tasiaux, H., Remacle, S., George, F., Paul, D., & Donnay, I. (2008). Kinetics of fertilization and development, and sex ratio of bovine embryos produced using the semen of different bulls. Animal Reproduction Science, 107(1–2), 48–61. https://doi.org/10.1016/j.anireprosci.2007.06.009.

    Article  CAS  PubMed  Google Scholar 

  • Avery, B. (1989). Impact of asynchronous ovulations on the expression of sex-dependent growth rate in bovine preimplantation embryos. Journal of Reproduction and Fertility, 87(2), 627–631.

    Article  CAS  PubMed  Google Scholar 

  • Avery, B., Madison, V., & Greve, T. (1991). Sex and development in bovine in-vitro fertilized embryos. Theriogenology, 35(5), 953–963.

    Article  CAS  PubMed  Google Scholar 

  • Bermejo-Alvarez, P., Rizos, D., Lonergan, P., & Gutierrez-Adan, A. (2011). Transcriptional sexual dimorphism in elongating bovine embryos: Implications for XCI and sex determination genes. Reproduction, 141(6), 801–808. https://doi.org/10.1530/rep-11-0006.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, R. V., Del Campo, M. R., Palasz, A. T., Plante, Y., & Mapletoft, R. J. (1996). Survival rates and sex ratio of bovine IVE embryos frozen at different developmental stages on day 7. Theriogenology, 45(2), 489–498.

    Article  CAS  PubMed  Google Scholar 

  • Daneau, I., Houde, A., Ethier, J. F., Lussier, J. G., & Silversides, D. W. (1995). Bovine SRY gene locus: Cloning and testicular expression. Biology of Reproduction, 52(3), 591–599.

    Article  CAS  PubMed  Google Scholar 

  • De La Fuente, R., Hahnel, A., Basrur, P. K., & King, W. A. (1999). X inactive-specific transcript (Xist) expression and X chromosome inactivation in the preattachment bovine embryo. Biology of Reproduction, 60(3), 769–775. https://doi.org/10.1095/biolreprod60.3.769.

    Article  Google Scholar 

  • de Souza, D. K., Salles, L. P., & Rosa, e, & Silva, A. A. (2015). Aspects of energetic substrate metabolism of in vitro and in vivo bovine embryos. Brazilian Journal of Medical and Biological Research, 48(3), 191–197. https://doi.org/10.1590/1414-431x20143744.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardner, D. K., Lane, M., Stevens, J., & Schoolcraft, W. B. (2001). Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertility and Sterility, 76(6), 1175–1180.

    Article  CAS  PubMed  Google Scholar 

  • Graca, G., Duarte, I. F., Barros, A. S., Goodfellow, B. J., Diaz, S., Carreira, I. M., et al. (2009). (1)H NMR based metabonomics of human amniotic fluid for the metabolic characterization of fetus malformations. Journal of Proteome, 8(8), 4144–4150. https://doi.org/10.1021/pr900386f.

    Article  CAS  Google Scholar 

  • Guimarães, A. C. G., Leivas, F. G., Santos, F. W., Schwengber, E. B., Giotto, A. B., Machado, C. I. U., et al. (2014). Reduction of centrifugation force in discontinuous percoll gradients increases in vitro fertilization rates without reducing bovine sperm recovery. Animal Reproduction Science, 146(3–4), 103–110. https://doi.org/10.1016/j.anireprosci.2014.02.016.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Adan, A., Behboodi, E., Andersen, G. B., Medrano, J. F., & Murray, J. D. (1996). Relationship between stage of development and sex of bovine IVM-IVF embryos cultured in vitro versus in the sheep oviduct. Theriogenology, 46(3), 515–525.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Adan, A., Lonergan, P., Rizos, D., Ward, F. A., Boland, M. P., Pintado, B., et al. (2001). Effect of the in vitro culture system on the kinetics of blastocyst development and sex ratio of bovine embryos. Theriogenology, 55(5), 1117–1126.

    Article  CAS  PubMed  Google Scholar 

  • Hasler, J. F. (2014). Forty years of embryo transfer in cattle: A review focusing on the journal Theriogenology, the growth of the industry in North America, and personal reminisces. Theriogenology, 81(1), 152–169. https://doi.org/10.1016/j.theriogenology.2013.09.010.

    Article  PubMed  Google Scholar 

  • Houghton, F. D., & Leese, H. J. (2004). Metabolism and developmental competence of the preimplantation embryo. European Journal of Obstetrics & Gynecology and Reproductive Biology, 115(Suppl 1), 92–96. https://doi.org/10.1016/j.ejogrb.2004.01.019.

    Article  CAS  Google Scholar 

  • Khurana, N. K., & Niemann, H. (2000). Energy metabolism in preimplantation bovine embryos derived in vitro or in vivo. Biology of Reproduction, 62(4), 847–856.

    Article  CAS  PubMed  Google Scholar 

  • King, W. A., Yadav, B. R., Xu, K. P., Picard, L., Sirard, M. A., Verini Supplizi, A., et al. (1991). The sex ratios of bovine embryos produced in vivo and in vitro. Theriogenology, 36(5), 779–788. https://doi.org/10.1016/0093-691X(91)90343-C.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, V., Dwivedi, D. K., & Jagannathan, N. R. (2014). High-resolution NMR spectroscopy of human body fluids and tissues in relation to prostate cancer. NMR in Biomedicine, 27(1), 80–89. https://doi.org/10.1002/nbm.2979.

    Article  CAS  PubMed  Google Scholar 

  • Lindon, J. C., Nicholson, J. K., Holmes, E., Antti, H., Bollard, M. E., Keun, H., et al. (2003). Contemporary issues in toxicology the role of metabonomics in toxicology and its evaluation by the COMET project. Toxicology and Applied Pharmacology, 187(3), 137–146. https://doi.org/10.1016/S0041-008X(02)00079-0.

    Article  CAS  PubMed  Google Scholar 

  • Lonergan, P., Khatir, H., Piumi, F., Rieger, D., Humblot, P., & Boland, M. P. (1999). Effect of time interval from insemination to first cleavage on the developmental characteristics, sex ratio and pregnancy rate after transfer of bovine embryos. Journal of Reproduction and Fertility, 117(1), 159–167.

    Article  CAS  PubMed  Google Scholar 

  • MacIntyre, D. A., Melguizo Sanchis, D., Jimenez, B., Moreno, R., Stojkovic, M., & Pineda-Lucena, A. (2011). Characterisation of human embryonic stem cells conditioning media by 1H-nuclear magnetic resonance spectroscopy. PLoS ONE, 6(2), e16732. https://doi.org/10.1371/journal.pone.0016732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milewska, A. J., Jankowska, D., Citko, D., Więsak, T., Acacio, B., & Milewski, R. (2014). The use of principal component analysis and logistic regression in prediction of infertility treatment outcome. Studies in Logic, 39(52), 17. https://doi.org/10.2478/slgr-2014-0043.

    Article  Google Scholar 

  • Nadal-Desbarats, L., Veau, S., Blasco, H., Emond, P., Royere, D., Andres, C., et al. (2012). Is NMR metabolic profiling of spent embryo culture media useful to assist in vitro human embryo selection? MAGMA, 26(2), 193–202. https://doi.org/10.1007/s10334-012-0331-x.

    Article  CAS  PubMed  Google Scholar 

  • Okamoto, I., Otte, A. P., Allis, C. D., Reinberg, D., & Heard, E. (2004). Epigenetic dynamics of imprinted X inactivation during early mouse development. Science, 303(5658), 644–649. https://doi.org/10.1126/science.1092727.

    Article  CAS  PubMed  Google Scholar 

  • Parrish, J. J. (2014). Bovine in vitro fertilization: In vitro oocyte maturation and sperm capacitation with heparin. Theriogenology, 81(1), 67–73. https://doi.org/10.1016/j.theriogenology.2013.08.005.

    Article  PubMed  Google Scholar 

  • Parrish, J. J., Susko-Parrish, J. L., Leibfried-Rutledge, M. L., Critser, E. S., Eyestone, W. H., & First, N. L. (1986). Bovine in vitro fertilization with frozen-thawed semen. Theriogenology, 25(4), 591–600.

    Article  CAS  PubMed  Google Scholar 

  • Pauli, G. F., Jaki, B. U., & Lankin, D. C. (2005). Quantitative 1H NMR: Development and potential of a method for natural products analysis. Journal of Natural Products, 68(1), 133–149. https://doi.org/10.1021/np0497301.

    Article  CAS  PubMed  Google Scholar 

  • Perry, G. (2015). 2014 statistics of embryo collection and transfer in domestic farm animals (2015 ed., pp. 9–11), IETS.

  • Pudakalakatti, S. M., Uppangala, S., D’Souza, F., Kalthur, G., Kumar, P., Adiga, S. K., et al. (2013). NMR studies of preimplantation embryo metabolism in human assisted reproductive techniques: A new biomarker for assessment of embryo implantation potential. NMR in Biomedicine, 26(1), 20–27. https://doi.org/10.1002/nbm.2814.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, I., & Nelson, R. (1998). Certification and identification of the embryo. Manual of the International Embryo Transfer Society, 9, 103–116.

    Google Scholar 

  • Rosenfeld, C. S., Grimm, K. M., Livingston, K. A., Brokman, A. M., Lamberson, W. E., & Roberts, R. M. (2003). Striking variation in the sex ratio of pups born to mice according to whether maternal diet is high in fat or carbohydrate. Proceedings of the National Academy of Sciences USA, 100(8), 4628–4632. https://doi.org/10.1073/pnas.0330808100.

    Article  CAS  Google Scholar 

  • Sattar, A., Rubessa, M., Di Francesco, S., Longobardi, V., Di Palo, R., Zicarelli, L., et al. (2011). The influence of gamete co-incubation length on the in vitro fertility and sex ratio of bovine bulls with different penetration speed. Reproduction in Domestic Animals, 46(6), 1090–1097. https://doi.org/10.1111/j.1439-0531.2011.01791.x.

    Article  CAS  PubMed  Google Scholar 

  • Seli, E., Botros, L., Sakkas, D., & Burns, D. H. (2008). Noninvasive metabolomic profiling of embryo culture media using proton nuclear magnetic resonance correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertility and Sterility, 90(6), 2183–2189. https://doi.org/10.1016/j.fertnstert.2008.07.1739.

    Article  PubMed  Google Scholar 

  • Sturmey, R. G., Bermejo-Alvarez, P., Gutierrez-Adan, A., Rizos, D., Leese, H. J., & Lonergan, P. (2010). Amino acid metabolism of bovine blastocysts: A biomarker of sex and viability. Molecular Reproduction and Development, 77(3), 285–296. https://doi.org/10.1002/mrd.21145.

    Article  CAS  PubMed  Google Scholar 

  • Tervit, H. R., Whittingham, D. G., & Rowson, L. E. (1972). Successful culture in vitro of sheep and cattle ova. Journal of Reproduction and Fertility, 30(3), 493–497.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, J. G., Partridge, R. J., Houghton, F. D., Cox, C. I., & Leese, H. J. (1996). Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos. Journal of Reproduction and Fertility, 106(2), 299–306.

    Article  CAS  PubMed  Google Scholar 

  • Vajta, G., Korosi, T., Du, Y., Nakata, K., Ieda, S., Kuwayama, M., et al. (2008). The well-of-the-well system: An efficient approach to improve embryo development. Reproductive Biomedicine Online, 17(1), 73–81.

    Article  PubMed  Google Scholar 

  • Wallace, M., Cottell, E., Cullinane, J., McAuliffe, F. M., Wingfield, M., & Brennan, L. (2014). (1)H NMR based metabolic profiling of day 2 spent embryo media correlates with implantation potential. Systems Biology in Reproductive Medicine, 60(1), 58–63. https://doi.org/10.3109/19396368.2013.854426.

    Article  CAS  PubMed  Google Scholar 

  • Wishart, D. S., Lewis, M. J., Morrissey, J. A., Flegel, M. D., Jeroncic, K., Xiong, Y., et al. (2008). The human cerebrospinal fluid metabolome. Journal of Chromatography B, 871(2), 164–173. https://doi.org/10.1016/j.jchromb.2008.05.001.

    Article  CAS  Google Scholar 

  • Xu, K. P., Yadav, B. R., King, W. A., & Betteridge, K. J. (1992). Sex-related differences in developmental rates of bovine embryos produced and cultured in vitro. Molecular Reproduction and Development, 31(4), 249–252. https://doi.org/10.1002/mrd.1080310404.

    Article  CAS  PubMed  Google Scholar 

  • Yadav, B. R., King, W. A., & Betteridge, K. J. (1993). Relationships between the completion of first cleavage and the chromosomal complement, sex, and developmental rates of bovine embryos generated in vitro. Molecular Reproduction and Development, 36(4), 434–439. https://doi.org/10.1002/mrd.1080360405.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Scott E. Denmark for this helpful discussions, the generous use of his lab and the 750-MHz Agilent VNS750NB spectrometer. This work was partially funded by the University of Illinois Experiment Station and the U.S. Department of Agriculture-National Institute of Food and Agriculture via Multistate Research Project W-2171, #ILLU-538-347.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: MR, MBW; Performed the experiments: MR, AA KMP, MBW; Analyzed the data: DG-P, MR, MBW; Contributed reagents/materials/analysis tools: DG-P, AA, Scott Denmark. Wrote the paper: MR, KMP, MBW. Critical revised the paper: MR, AA, DG-P, KMP, MBW.

Corresponding author

Correspondence to Matthew B. Wheeler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants/tissues or live animals performed by any of the authors. The oocytes were purchased from a commercial company, DeSoto Biosciences, Seymour, TN, USA. The oocytes were purchased by DeSoto Biosciences who aspirated the oocytes from the ovaries and provided them to us. The abattoir where the ovaries were purchased is a USDA inspected facility and conforms to all USDA regulations. We did not used any live animals for these studies. Similarly, the frozen semen used was from a commercial semen vendor. We purchased the semen used it these studies and had no contact with the bulls used for the in vitro fertilization. Our University does not require IACUC (animal care and use) protocols when using purchased tissues or abattoir materials. We therefore see no ethics issues with the present study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1503 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubessa, M., Ambrosi, A., Gonzalez-Pena, D. et al. Non-invasive nuclear magnetic resonance analysis of male and female embryo metabolites during in vitro embryo culture. Metabolomics 14, 113 (2018). https://doi.org/10.1007/s11306-018-1414-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-018-1414-0

Keywords

Navigation