Metabolomic analysis of pollen from honey bee hives and from canola flowers


Background and aims

Pollen is essential for successful plant reproduction and critical for plant-pollinator mutualisms, as pollen is essential larval nutrition. However, we understand very little about the chemical constituents of pollen leading us to this exploratory study characterizing plant and beehive pollen.


We performed a metabolomics assay of canola flower pollen and beehive pollen.

Results and discussion

The metabolome of canola pollen is affected by irrigation showing differences in lipids and non-polar secondary metabolites. Metabolome of beehive pollen is affected by plant source showing differences in pentose sugars, myo-inositol and furanose. Further research is needed to document the nutritional bases of plant-pollinator mutualism.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. Abdel-Ghany, S. E., Day, I., Heuberger, A. L., Broeckling, C. D., & Reddy, A. S. (2013). Metabolic engineering of Arabidopsis for butanetriol production using bacterial genes. Metabolic Engineering, 20, 109–120.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson, K. E., Carroll, M. J., Sheehan, T., Mott, B. M., Maes, P., & Corby-Harris, V. (2014). Hive-stored pollen of honey bees: Many lines of evidence are consistent with pollen preservation, not nutrient conversion. Molecular Ecology, 23, 5904–5917.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Avni, D., Hendriksma, H. P., Dag, A., Uni, Z., & Shafir, S. (2014). Nutritional aspects of honey bee-collected pollen and constraints on colony development in the eastern Mediterranean. Journal of Insect Physiology.

    PubMed  Article  Google Scholar 

  4. Bradford, M. M. (1976). Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein–dye binding. Analytical Biochemistry, 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  5. Brodschneider, R., & Crailsheim, K. (2010). Nutrition and health in honey bees. Apidologie, 41, 278–294.

    Article  Google Scholar 

  6. Broeckling, C. D., Afsar, F. A., Neumann, S., Ben-Hur, A., & Prenni, J. E. (2014). RAMClust: A novel feature clustering method enables spectral-matching-based annotation for metabolomics data. Analytical Chemistry, 86, 6812–6817.

    Article  PubMed  CAS  Google Scholar 

  7. Bronstein, J. L. (1994). Our current understanding of mutualism. The Quarterly Review of Biology, 69, 31–51.

    Article  Google Scholar 

  8. Brown, R. (1982). Pollen trap for beehives. U.S. Patent No. 4,337,541. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  9. Campos, M. G. R., et al. (2008). Pollen composition and standardisation of analytical methods. Journal of Apicultural Research, 47, 154–161.

    Article  CAS  Google Scholar 

  10. Free, J. B. (1970). Insect Pollination of Crops. London: Academic Press.

    Google Scholar 

  11. Ganna, A., et al. (2014). Large-scale metabolomic profiling identifies novel biomarkers for incident coronary heart disease. PLoS Genet, 10, e1004801.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Herbert, E. W., & Shimanuki, H. (1978). Chemical composition and nutritive value of bee-collected and bee-stored pollen. Apidologie, 9, 33–40.

    Article  Google Scholar 

  13. Keller, I., Fluri, P., & Imdorf, A. (2005a). Pollen nutrition and colony development in honey bees—Part II. Bee World, 86, 27–34.

    Article  Google Scholar 

  14. Keller, I., Fluri, P., & Imdorf, A. (2005b). Pollen nutrition and colony development in honey bees: Part 1. Bee World, 86, 3–10.

    Article  Google Scholar 

  15. Mao, W., Schuler, M. A., & Berenbaum, M. R. (2013). Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. Proceedings of the National Academy of Sciences USA, 110, 8842–8846.

    Google Scholar 

  16. Matilla, H. R., & Otis, G. W. (2006). The effects of pollen availability during larval development on the behaviour and physiology of spring-reared honey bee workers. Apidologie, 37, 533–546.

    Article  Google Scholar 

  17. Meindl, G. A., & Ashman, T.-L. (2013). The effects of aluminum and nickel in nectar on the foraging behavior of bumblebees. Environmental Pollution, 177, 78–81.

    Article  PubMed  CAS  Google Scholar 

  18. Olofsson, T. C., & Vásquez, A. (2008). Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Current Microbiology, 57, 356–363.

    Article  PubMed  CAS  Google Scholar 

  19. Rashed, M. N., & Soltan, M. E. (2004). Major and trace elements in different types of Egyptian mono-floral and non-floral bee honeys. Journal of Food Composition and Analysis, 17, 725–735.

    Article  CAS  Google Scholar 

  20. Roulston, T. a. H., Cane, J. H., & Buchmann, S. L. (2000). What governs protein content of pollen: Pollinator preferences, pollen–pistil interactions, or phylogeny? Ecological Monographs, 70, 617–643.;2.

    Article  Google Scholar 

  21. Scofield, H. N., & Mattila, H. R. (2015). Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults. PLoS ONE, 10, e0121731.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Searcy, K. B., & Mulcahy, D. L. (1985). Pollen tube competition and selection for metal tolerance in Silene dioica (Caryophyllaceae) and Mimulus guttatus (Scrophulariaceae). American Journal of Botany, 72, 1695–1699.

    Article  Google Scholar 

  23. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., Siuzdak (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identification. Analytical Chemistry, 78, 779–787.

    Article  PubMed  CAS  Google Scholar 

  24. Søvik, E., Perry, C. J., LaMora, A., Barron, A. B., & Ben-Shahar, Y. (2015). Negative impact of manganese on honeybee foraging. Biology Letters, 11, 20140989.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. van der Steen, J. J. M., & de Kraker, J. (2012). Spatial and temporal variation of metal concentrations in adult honeybees (Apis mellifera L.). Environmental Monitoring and Assessment, 184, 4119–4126.

    Article  PubMed  CAS  Google Scholar 

  26. Vásquez, A., & Olofsson, T. C. (2009). The lactic acid bacteria involved in the production of bee pollen and bee bread. Journal of Apicultural Research, 48, 189–195.

    Article  Google Scholar 

  27. Vaudo, A. D., Tooker, J. F., Grozinger, C. M., & Patch, H. M. (2015). Bee nutrition and floral resource restoration. Current Opinion in Insect Science, 10, 133–141.

    Article  PubMed  Google Scholar 

Download references


Honey bee Health Task Force (North American Pollinator Protection Campaign) and United States Geological Survey grants funded the study. Thanks to Colton O’Brien for help with bee colonies. Proteomics and Metabolomics Facility at Colorado State University analyzed samples, performed data analyses and generated reports that are presented here.

Author information




AHS: study design, data analysis and manuscript preparation. EB&LB: p-coumaric acid analyses and manuscript preparation.

Corresponding author

Correspondence to H. S. Arathi.

Ethics declarations

Conflict of interest

Authors declare no potential conflicts of interest.

Ethical approval

This research does not involve Human Participants and/or Animals.

Inform Consent

All authors provide consent.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arathi, H.S., Bjostad, L. & Bernklau, E. Metabolomic analysis of pollen from honey bee hives and from canola flowers. Metabolomics 14, 86 (2018).

Download citation


  • Canola
  • Honey bees
  • Metabolomics
  • p-Coumaric acid
  • Pollen