, 14:75 | Cite as

Optimized GC–MS metabolomics for the analysis of kidney tissue metabolites

  • Biswapriya B. MisraEmail author
  • Ram P. Upadhayay
  • Laura A. Cox
  • Michael Olivier
Original Article



Metabolomics is a promising approach for discovery of relevant biomarkers in cells, tissues, organs, and biofluids for disease identification and prediction. The field has mostly relied on blood-based biofluids (serum, plasma, urine) as non-invasive sources of samples as surrogates of tissue or organ-specific conditions. However, the tissue specificity of metabolites pose challenges in translating blood metabolic profiles to organ-specific pathophysiological changes, and require further downstream analysis of the metabolites.


As part of this project, we aim to develop and optimize an efficient extraction protocol for the analysis of kidney tissue metabolites representative of key primate metabolic pathways.


Kidney cortex and medulla tissues of a baboon were homogenized and extracted using eight different extraction protocols including methanol/water, dichloromethane/methanol, pure methanol, pure water, water/methanol/chloroform, methanol/chloroform, methanol/acetonitrile/water, and acetonitrile/isopropanol/water. The extracts were analyzed by a two-dimensional gas chromatography time-of-flight mass-spectrometer (2D GC–ToF-MS) platform after methoximation and silylation.


Our analysis quantified 110 shared metabolites in kidney cortex and medulla tissues from hundreds of metabolites found among the eight different solvent extractions spanning low to high polarities. The results revealed that medulla is metabolically richer compared to the cortex. Dichloromethane and methanol mixture (3:1) yielded highest number of metabolites across both the tissue types. Depending on the metabolites of interest, tissue type, and the biological question, different solvents can be used to extract specific groups of metabolites.


This investigation provides insights into selection of extraction solvents for detection of classes of metabolites in renal cortex and medulla, which is fundamentally important for identification of prognostic and diagnostic metabolic kidney biomarkers for future therapeutic applications.


Kidney Non-human primate Solvent Extraction Optimization GC–MS 



This work was supported by a Forum Grant (BM-17-04629) awarded to BBM by the Texas Biomedical Research Institute, San Antonio, Texas.

Author contributions

BBM envisioned the project, BBM, and LAC designed the research; BBM and RPU performed the experiments; MO provided essential reagents and materials, BBM analyzed the data, BBM, MO, LAC wrote the manuscript, and BBM interpreted the data, has the primary responsibility for the final content, and edits. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest and no conflicts of interest.

Ethical approval

The baboon kidney samples were collected under IACUC approved protocols at facilities located at the Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States. All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Supplementary material

11306_2018_1373_MOESM1_ESM.doc (42 kb)
Supplementary material 1 (DOC 42 KB)
11306_2018_1373_MOESM2_ESM.doc (1.6 mb)
Supplementary material 2 (DOC 1670 KB)
11306_2018_1373_MOESM3_ESM.xlsx (215 kb)
Supplementary material 3 (XLSX 215 KB)


  1. Arthur, J. M., Thongboonkerd, V., Scherzer, J. A., Cai, J., Pierce, W. M., & Klein, J. B. (2002). Differential expression of proteins in renal cortex and medulla: A proteomic approach. Kidney International, 62(4), 1314–1321. Scholar
  2. Boudonck, K. J., Mitchell, M. W., Német, L., Keresztes, L., Nyska, A., Shinar, D., & Rosenstock, M. (2009). Discovery of metabolomics biomarkers for early detection of nephrotoxicity. Toxicologic Pathology, 37(3), 280–292. Scholar
  3. Caraux, G., & Pinloche, S. (2005). PermutMatrix: A graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics, 21, 1280–1281. Scholar
  4. Chambers, J. M. (2017). Graphical methods for data analysis. Boca Raton: CRC Press.Google Scholar
  5. Chen, S., Hoene, M., Li, J., Li, Y., Zhao, X., Häring, H. U., Schleicher, E. D., Weigert, C., Xu, G., & Lehmann, R. (2013). Simultaneous extraction of metabolome and lipidome with methyl tert-butyl ether from a single small tissue sample for ultra-high performance liquid chromatography/mass spectrometry. Journal of Chromatography A, 1298, 9–16. Scholar
  6. Connor, S. C., Hansen, M. K., Corner, A., Smith, R. F., & Ryan, T. E. (2010). Integration of metabolomics and transcriptomics data to aid biomarker discovery in type 2 diabetes. Molecular BioSystems, 6(5), 909–921. Scholar
  7. Conway, J. R., Lex, A., & Gehlenborg, N. (2017). UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics, 33(18), 2938–2940. Scholar
  8. Cox, L. A., Comuzzie, A. G., Havill, L. M., Karere, G. M., Spradling, K. D., Mahaney, M. C. et al. (2013). Baboons as a model to study genetics and epigenetics of human disease. ILAR Journal, 54(2), 106–121.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fiehn, O. (2016). Metabolomics by gas chromatography–mass spectrometry: Combined targeted and untargeted profiling. Current Protocols in Molecular Biology. Scholar
  10. Fiehn, O., Wohlgemuth, G., & Scholz, M. (2005). Setup and annotation of metabolomic experiments by integrating biological and mass spectrometric metadata. In B. Ludäscher & L. Raschid (Eds.), Data integration in the life sciences. DILS 2005. Lecture notes in computer science (Vol. 3615). Berlin: Springer. Scholar
  11. Gebhard, R. L., Clayman, R. V., Prigge, W. F., Figenshau, R., Staley, N. A., Reesey, C., & Bear, A. (1987). Abnormal cholesterol metabolism in renal clear cell carcinoma. Journal of Lipid Research, 28(10), 1177–1184.PubMedGoogle Scholar
  12. Grapov, D. (2014) DeviumWeb: Version 0.3.2. ZENODO.,
  13. Hallan, S., Afkarian, M., Zelnick, L. R., Kestenbaum, B., Sharma, S., Saito, R., Darshi, M., Barding, G., Raftery, D., Ju, W., & Kretzler, M. (2017). Metabolomics and gene expression analysis reveal down-regulation of the citric acid (TCA) cycle in non-diabetic CKD patients. EBioMedicine, 26, 68–77. Scholar
  14. Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Tanaka, K., Tanaka, S., Aoshima, K., & Oda, Y. (2010). MassBank: A public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry, 45(7), 703–714. Scholar
  15. Ibáñez, C., Simó, C., Palazoglu, M., & Cifuentes, A. (2017). GC-MS based metabolomics of colon cancer cells using different extraction solvents. Analytica Chimica Acta, 986, 48–56. Scholar
  16. Karlsson, K. A., Samuelsson, B. E., & Steen, G. O. (1973). The sphingolipid composition of bovine kidney cortex, medulla and papilla. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 316(3), 317–335.CrossRefGoogle Scholar
  17. Kim, K., Aronov, P., Zakharkin, S. O., Anderson, D., Perroud, B., Thompson, I. M., & Weiss, R. H. (2009). Urine metabolomics analysis for kidney cancer detection and biomarker discovery. Molecular & Cellular Proteomics, 8(3), 558–570. Scholar
  18. Kind, T., Tolstikov, V., Fiehn, O., & Weiss, R. H. (2007). A comprehensive urinary metabolomic approach for identifying kidney cancer. Analytical Biochemistry, 363(2), 185–195. Scholar
  19. Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmüller, E., et al. (2005). GMD@ CSB. DB: The Golm metabolome database. Bioinformatics, 21, 1635–1638. Scholar
  20. Lee, J. W., Chou, C. L., & Knepper, M. A. (2015). Deep sequencing in microdissected renal tubules identifies nephron segment–specific transcriptomes. Journal of the American Society of Nephrology. Scholar
  21. Leuthold, P., Schaeffeler, E., Winter, S., Büttner, F., Hofmann, U., Mürdter, T. E., Rausch, S., Sonntag, D., Wahrheit, J., Fend, F., & Hennenlotter, J. (2017). Comprehensive metabolomic and lipidomic profiling of human kidney tissue: A platform comparison. Journal of Proteome Research, 16(2), 933–944. Scholar
  22. Lin, C. Y., Wu, H., Tjeerdema, R. S., & Viant, M. R. (2007). Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics, 3(1), 55–67. Scholar
  23. Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 1, 387–396. Scholar
  24. Little, J. L. (1999). Artifacts in trimethylsilyl derivatization reactions and ways to avoid them. Journal of Chromatography A, 844(1), 1–22. Scholar
  25. Mahadevan, S., Shah, S. L., Marrie, T. J., & Slupsky, C. M. (2008). Analysis of metabolomic data using support vector machines. Analytical Chemistry, 80(19), 7562–7570. Scholar
  26. Martin, A. C., Pawlus, A. D., Jewett, E. M., Wyse, D. L., Angerhofer, C. K., & Hegeman, A. D. (2014). Evaluating solvent extraction systems using metabolomics approaches. RSC Advances, 4(50), 26325–26334. Scholar
  27. Masson, P., Alves, A. C., Ebbels, T. M., Nicholson, J. K., & Want, E. J. (2010). Optimization and evaluation of metabolite extraction protocols for untargeted metabolic profiling of liver samples by UPLC-MS. Analytical Chemistry, 82(18), 7779–7786. Scholar
  28. Masson, P., Spagou, K., Nicholson, J. K., & Want, E. J. (2011). Technical and biological variation in UPLC–MS-based untargeted metabolic profiling of liver extracts: Application in an experimental toxicity study on galactosamine. Analytical Chemistry, 83(3), 1116–1123. Scholar
  29. Melnick, J. Z., Baum, M., & Thompson, J. R. (1994). Aminoglycoside-induced Fanconi’s syndrome. American Journal of Kidney Diseases, 23(1), 118–122. Scholar
  30. Nielsen, P. M., Eldirdiri, A., Bertelsen, L. B., Jørgensen, H. S., Ardenkjaer-Larsen, J. H., & Laustsen, C. (2017). Fumarase activity: An in vivo and in vitro biomarker for acute kidney injury. Scientific Reports. Scholar
  31. Pastore, A., Noce, A., Di Giovamberardino, G., De Stefano, A., Callà, C., Zenobi, R., Dessì, M., & Di Daniele, N. (2015). Homocysteine, cysteine, folate and vitamin B12 status in type 2 diabetic patients with chronic kidney disease. Journal of Nephrology, 28(5), 571–576. Scholar
  32. Patterson, A. D., Bonzo, J. A., Li, F., Krausz, K. W., Eichler, G. S., Aslam, S., Tigno, X., Weinstein, J. N., Hansen, B. C., Idle, J. R., & Gonzalez, F. J. (2011). Metabolomics reveals attenuation of the SLC6A20 kidney transporter in nonhuman primate and mouse models of type 2 diabetes mellitus. Journal of Biological Chemistry, 286(22), 19511–19522. Scholar
  33. Pickering, C. M., Grady, C., Medvar, B., Emamian, M., Sandoval, P. C., Zhao, Y., Yang, C. R., Jung, H. J., Chou, C. L., & Knepper, M. A. (2016). Proteomic profiling of nuclear fractions from native renal inner medullary collecting duct cells. Physiological Genomics, 48(2), 154–166. Scholar
  34. R Development Core Team. (2017). R: A language and environment for statistical computing [Internet]. Vienna: R Foundation for Statistical Computing.Google Scholar
  35. Rhee, E. P., Clish, C. B., Wenger, J., Roy, J., Elmariah, S., Pierce, K. A., Bullock, K., Anderson, A. H., Gerszten, R. E., & Feldman, H. I. (2016). Metabolomics of chronic kidney disease progression: A case-control analysis in the chronic renal insufficiency cohort study. American Journal of Nephrology, 43(5), 366–374. Scholar
  36. Sokal, R. R., & Rohlf, F. J. (1995). Biometry: The principles and practice of statistics in biological research. New York: W.H. Freeman and Company.Google Scholar
  37. Sonmez, G., Mutlu, H., Ozturk, E., Sildiroglu, H. O., Keskin, A. T., Basekim, C. C., & Kizilkaya, E. (2007). Magnetic resonance imaging findings of adult-onset glutaric aciduria type I. Acta Radiologica, 48(5), 557–559.CrossRefPubMedGoogle Scholar
  38. Suhre, K., Meisinger, C., Döring, A., Altmaier, E., Belcredi, P., Gieger, C., Chang, D., Milburn, M. V., Gall, W. E., Weinberger, K. M., & Mewes, H. W. (2010). Metabolic footprint of diabetes: A multiplatform metabolomics study in an epidemiological setting. PLoS ONE, 5(11), e13953. Scholar
  39. Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., Fan, T. W. M., Fiehn, O., Goodacre, R., Griffin, J. L., & Hankemeier, T. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3(3), 211–221. Scholar
  40. Sun, J., Shannon, M., Ando, Y., Schnackenberg, L. K., Khan, N. A., Portilla, D., & Beger, R. D. (2012). Serum metabolomic profiles from patients with acute kidney injury: A pilot study. Journal of Chromatography B, 893, 107–113. Scholar
  41. Van der Kloet, F. M., Tempels, F. W. A., Ismail, N., Van der Heijden, R., Kasper, P. T., Rojas-Cherto, M., Van Doorn, R., Spijksma, G., Koek, M., Van der Greef, J., & Mäkinen, V. P. (2012). Discovery of early-stage biomarkers for diabetic kidney disease using MS-based metabolomics (FinnDiane study). Metabolomics, 8(1), 109–119. Scholar
  42. Vorkas, P. A., Isaac, G., Anwar, M. A., Davies, A. H., Want, E. J., Nicholson, J. K., & Holmes, E. (2015). Untargeted UPLC-MS profiling pipeline to expand tissue metabolome coverage: Application to cardiovascular disease. Analytical Chemistry, 87(8), 4184. Scholar
  43. Wachsmuth, C. J., Vogl, F. C., Oefner, P. J., & Dettmer, K. (2013). Gas chromatographic techniques in metabolomics. In T. Hyotylainen, S. Wiedmer (Eds.), Chromatographic methods in metabolomics (pp. 87–105).Google Scholar
  44. Weiss, R. H., & Kim, K. (2012). Metabolomics in the study of kidney diseases. Nature Reviews Nephrology, 8(1), 22–33. Scholar
  45. Winnike, J. H., Wei, X., Knagge, K. J., Colman, S. D., Gregory, S. G., & Zhang, X. (2015). Comparison of GC-MS and GC × GC-MS in the analysis of human serum samples for biomarker discovery. Journal of Proteome Research, 14(4), 1810–1817. Scholar
  46. Wishart, D. S. (2012). Small molecules and disease. PLoS Computational Biology, 8(12), e1002805. Scholar
  47. Wu, H., Southam, A. D., Hines, A., & Viant, M. R. (2008). High-throughput tissue extraction protocol for NMR-and MS-based metabolomics. Analytical Biochemistry, 372(2), 204–212. Scholar
  48. Xia, J., Sinelnikov, I. V., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0—Making metabolomics more meaningful. Nucleic Acids Research, 43(W1), W251–W257. Scholar
  49. You, Y. H., Quach, T., Saito, R., Pham, J., & Sharma, K. (2015). Metabolomics reveals a key role for fumarate in mediating the effects of NADPH oxidase 4 in diabetic kidney disease. Journal of the American Society of Nephrology. Scholar
  50. Zukunft, S., Prehn, C., Röhring, C., Möller, G., de Angelis, M. H., Adamski, J., & Tokarz, J. (2018). High-throughput extraction and quantification method for targeted metabolomics in murine tissues. Metabolomics, 14(1), 18. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Precision Medicine, Department of Internal Medicine, Section of Molecular MedicineWake Forest School of MedicineWinston-SalemUSA
  2. 2.Department of GeneticsTexas Biomedical Research InstituteSan AntonioUSA
  3. 3.Southwest National Primate Research CenterTexas Biomedical Research InstituteSan AntonioUSA

Personalised recommendations