Miniaturized 1H-NMR method for analyzing limited-quantity samples applied to a mouse model of Leigh disease

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Introduction

The analysis of limited-quantity samples remains a challenge associated with mouse models, especially for multi-platform metabolomics studies. Although inherently insensitive, the highly specific characteristics of nuclear magnetic resonance (NMR) spectroscopy make it an advantageous platform for global metabolite profiling, particularly in mitochondrial disease research.

Objectives

Show method equivalency between a well-established standard operating protocol (SOP) and our novel miniaturized 1H-NMR method.

Method

The miniaturized method was performed in a 2 mm NMR tube on a standard 500 MHz NMR spectrometer with a 5 mm triple-resonance inverse TXI probe at room temperature.

Results

Firstly, using synthetic urine spiked with low (50 µM), medium (250 µM) and high (500 µM) levels (n = 10) of nine standards, both the SOP and miniaturized method were shown to have acceptable precision (CV < 15%), relative accuracy (80–120%), and linearity (R2 > 0.95), except for taurine. Furthermore, statistical equivalence was shown using the two one-sided test. Secondly, pooled mouse quadriceps muscle extract was used to further confirm method equivalence (n = 3), as well as explore the analytical dynamics of this novel approach by analyzing more-concentrated versions of samples (up to 10× concentration) to expand identification of metabolites qualitatively, with quantitative linearity. Lastly, we demonstrate the new technique’s application in a pilot metabolomics study using minute soleus muscle tissue from a mouse model of Leigh syndrome using Ndufs4 KO mice.

Conclusion

We demonstrate method equivalency, supporting our novel miniaturized 1H-NMR method as a financially feasible alternative to cryoprobe technology—for limited-quantity biological samples in metabolomics studies that requires a volume one-tenth of the SOP.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Beckonert, O., Keun, H. C., Ebbels, T. M. D., Bundy, J., Holmes, E., Lindon, J. C., et al. (2007). Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature Protocols, 2, 2692–2703.

    Article  PubMed  CAS  Google Scholar 

  2. Cassiède, M., Nair, S., Dueck, M., Mino, J., McKay, R., Mercier, P., et al. (2017). Assessment of 1H NMR-based metabolomics analysis for normalization of urinary metals against creatinine. Clinica Chimica Acta, 464, 37–43.

    Article  CAS  Google Scholar 

  3. Chambers, D., Kelly, G., Limentani, G., Lister, A., Lung, K. R., & Warner, E. (2005). Analytical method equivalency. Pharmaceutical Technology, 29, 64–80.

    Google Scholar 

  4. Chan, C. C., Lee, Y. C., Lam, H., & Zhang, X. M. (Eds.). (2004). Analytical method validation and instrument performance verification. Hoboken: Wiley.

    Google Scholar 

  5. Dona, A. C., Jiménez, B., Schäfer, H., Humpfer, E., Spraul, M., Lewis, M. R., et al. (2014). Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping. Analytical Chemistry, 86, 9887–9894.

    Article  PubMed  CAS  Google Scholar 

  6. Dunn, W. B., Wilson, I. D., Nicholls, A. W., & Broadhurst, D. (2012). The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis, 4, 2249–2264.

    Article  PubMed  CAS  Google Scholar 

  7. Esterhuizen, K., van der Westhuizen, F. H., & Louw, R. (2017). Metabolomics of mitochondrial disease. Mitochondrion, 35, 97–110.

    Article  PubMed  CAS  Google Scholar 

  8. Figueira, J., Jonsson, P., Adolfsson, A. N., Adolfsson, R., Nyberg, L., & Öhman, A. (2016). NMR analysis of the human saliva metabolome distinguishes dementia patients from matched controls. Molecular BioSystems, 12, 2562–2571.

    Article  PubMed  CAS  Google Scholar 

  9. Fratila, R. M., & Velders, A. H. (2011). Small-volume nuclear magnetic resonance spectroscopy. Annual Review of Analytical Chemistry, 4, 227–249.

    Article  PubMed  CAS  Google Scholar 

  10. Glaves, J. P., Li, M. X., Mercier, P., Fahlman, R. P., & Sykes, B. D. (2014). High-throughput, multi-platform metabolomics on very small volumes: 1H NMR metabolite identification in an unadulterated tube-in-tube system. Metabolomics, 10, 1145–1151.

    Article  CAS  Google Scholar 

  11. Gullberg, J., Jonsson, P., Nordström, A., Sjöström, M., & Moritz, T. (2004). Design of experiments: An efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Analytical Biochemistry, 331, 283–295.

    Article  PubMed  CAS  Google Scholar 

  12. Hohmann, M., Felbinger, C., Christoph, N., Wachter, H., Wiest, J., & Holzgrabe, U. (2014). Quantification of taurine in energy drinks using 1 H NMR. Journal of Pharmaceutical and Biomedical Analysis, 93, 156–160.

    Article  PubMed  CAS  Google Scholar 

  13. Johansson, T., Jurva, U., Grönberg, G., Weidolf, L., & Masimirembwa, C. (2009). Novel metabolites of amodiaquine formed by CYP1A1 and CYP1B1: Structure elucidation using electrochemistry, mass spectrometry, and NMR. Drug Metabolism and Disposition, 37, 571–579.

    Article  PubMed  CAS  Google Scholar 

  14. Kayser, E., Sedensky, M. M., & Morgan, P. G. (2016). Region-specific defects of respiratory capacities in the Ndufs4(KO) mouse brain. PLoS ONE, 11, 1–18.

    Article  CAS  Google Scholar 

  15. Koves, T. R., Noland, R. C., Bates, A. L., Henes, S. T., Muoio, D. M., & Cortright, R. N. (2005). Subsarcolemmal and intermyofibrillar mitochondria play distinct roles in regulating skeletal muscle fatty acid metabolism. American Journal of Physiology-Cell Physiology, 288, C1074–C1082.

    Article  PubMed  CAS  Google Scholar 

  16. Li, H., Kumar Sharma, L., Li, Y., Hu, P., Idowu, A., Liu, D., et al. (2013). Comparative bioenergetic study of neuronal and muscle mitochondria during aging. Free Radical Biology and Medicine, 63, 30–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Limentani, G. B., Ringo, M. C., Ye, F., Bergquist, M. L., & McSorley, E. O. (2005). Beyond the t-test: Statistical equivalence testing. Analytical Chemistry, 77, 221A–226A.

    Article  PubMed  CAS  Google Scholar 

  18. Lindon, J. C., Holmes, E., Bollard, M. E., Stanley, E. G., & Nicholson, J. K. (2004). Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers, 9, 1–31.

    Article  PubMed  CAS  Google Scholar 

  19. Madji Hounoum, B., Mavel, S., Coque, E., Patin, F., Vourc’h, P., Marouillat, S., et al. (2017). Wildtype motoneurons, ALS-Linked SOD1 mutation and glutamate profoundly modify astrocyte metabolism and lactate shuttling. Glia, 65, 592–605.

    Article  PubMed  Google Scholar 

  20. Martin, G. E. (2005). Small-volume and high-sensitivity NMR probes. Annual Reports on NMR Spectroscopy, 56, 1–96.

    Article  CAS  Google Scholar 

  21. Schmitt-Kopplin, P., Harir, M., Kanawati, B., Tziozis, D., Hertkorn, N., & Gabelica, Z. (2012b). Chemical footprint of the solvent soluble extraterrestrial organic matter occluded in Sołtmany ordinary chondrite. Meteorites, 2, 79–92.

    Google Scholar 

  22. Schmitt-Kopplin, P., Liger-Belair, G., Koch, B. P., Flerus, R., Kattner, G., Harir, M., Kanawati, B., Lucio, M., Tziotis, D., Hertkorn, N., & Gebefügi, I. (2012a). Dissolved organic matter in sea spray: A transfer study from marine surface water to aerosols. Biogeosciences, 9, 1571–1582.

    Article  CAS  Google Scholar 

  23. US FDA. Guidance for industry, bioanalytical method validation. US FDA, MD, USA (2001).

  24. Xia, J., Sinelnikov, I., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Research, 43, W251–W257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work is based on the research supported by the National Research Foundation of South Africa (Grant No. 92736) and the Technological Innovation Agency of the Department of Science and Technology of South Africa.

Author information

Affiliations

Authors

Contributions

The manuscript was written with equal contributions from all authors.

Corresponding author

Correspondence to Shayne Mason.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

The AnimCare animal research ethics committee of North-West University approved (NWU-00378-16-A5) the animal protocols used here. All animals were maintained and all procedures performed in accordance with the code of ethics in research, training and testing of drugs in South Africa and complied with national legislation.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 578 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mason, S., Terburgh, K. & Louw, R. Miniaturized 1H-NMR method for analyzing limited-quantity samples applied to a mouse model of Leigh disease. Metabolomics 14, 74 (2018). https://doi.org/10.1007/s11306-018-1372-6

Download citation

Keywords

  • Nuclear magnetic resonance (NMR) spectroscopy
  • Miniaturized
  • Metabolomics
  • Ndufs4 KO mice, Leigh disease
  • Mouse model studies