, 14:60 | Cite as

A multidimensional 1H NMR lipidomics workflow to address chemical food safety issues

  • Jérémy Marchand
  • Estelle Martineau
  • Yann Guitton
  • Bruno Le Bizec
  • Gaud Dervilly-Pinel
  • Patrick Giraudeau
Original Article



Although it is still at a very early stage compared to its mass spectrometry (MS) counterpart, proton nuclear magnetic resonance (NMR) lipidomics is worth being investigated as an original and complementary solution for lipidomics. Dedicated sample preparation protocols and adapted data acquisition methods have to be developed to set up an NMR lipidomics workflow; in particular, the considerable overlap observed for lipid signals on 1D spectra may hamper its applicability.


The study describes the development of a complete proton NMR lipidomics workflow for application to serum fingerprinting. It includes the assessment of fast 2D NMR strategies, which, besides reducing signal overlap by spreading the signals along a second dimension, offer compatibility with the high-throughput requirements of food quality characterization.


The robustness of the developed sample preparation protocol is assessed in terms of repeatability and ability to provide informative fingerprints; further, different NMR acquisition schemes—including classical 1D, fast 2D based on non-uniform sampling or ultrafast schemes—are evaluated and compared. Finally, as a proof of concept, the developed workflow is applied to characterize lipid profiles disruption in serum from β-agonists diet fed pigs.


Our results show the ability of the workflow to discriminate efficiently sample groups based on their lipidic profile, while using fast 2D NMR methods in an automated acquisition framework.


This work demonstrates the potential of fast multidimensional 1H NMR—suited with an appropriate sample preparation—for lipidomics fingerprinting as well as its applicability to address chemical food safety issues.


Lipidomics NMR fingerprinting Ultrafast NMR Non uniform sampling Serum Food quality 



The authors would like to thank the Région Pays de la Loire for funding through the “Recherche-Formation-Innovation: Food 4.2” program (Grant LipidoTool) and the technical platform CORSAIRE.

Author contributions

GDP, BLB and PG designed research; JM performed research; EM contributed analytic tools; JM, EM, YG, GDP and PG analyzed data; JM, PG and GDP wrote the paper. All authors read and approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Animal Participants

The animal study was approved by the national Ethical Committee n°6 (Comité n°6 - Ministère de l’Enseignement Supérieur et de la Recherche – Direction Générale pour la Recherche et l’Innovation – Secrétariat « Autorisation de projet » - 1, rue Descartes, 75231 PARIS cedex 5) under agreement 2,015,092,516,084,715/APAFIS 1914 (Protocol Number CRIP-2015-054). The study was implemented at Centre de Recherche et d’Investigation Préclinique-CRIP-ONIRIS- Plate-forme de chirurgie et animaleries expérimentales, Oniris, Nantes, France, under agreement number F.44-271.

Institutional and national guidelines were followed for the animal experimentation, as mentioned in Cerfa N° 51706#02 and N° 14906*02; in particular ARTICLES R. 214-87 to 214-137 from CODE RURAL ET DE LA PÊCHE MARITIME (French Regulation).

Supplementary material

11306_2018_1360_MOESM1_ESM.pdf (3.4 mb)
Supplementary material 1 (PDF 3501 KB)


  1. Akoka, S., & Giraudeau, P. (2015). Fast hybrid multi-dimensional NMR methods based on ultrafast 2D NMR. Magnetic Resonance in Chemistry, 53, 986–994.CrossRefPubMedGoogle Scholar
  2. Barding, G. A. Jr., Salditos, R., & Larive, C. K. (2012). Quantitative NMR for bioanalysis and metabolomics. Analytical and Bioanalytical Chemistry, 404, 1165–1179.CrossRefPubMedGoogle Scholar
  3. Beger, R. D., Schnackenberg, L. K., Holland, R. D., Li, D., & Dragan, Y. (2006). Metabonomic models of human pancreatic cancer using 1D proton NMR spectra of lipids in plasma. Metabolomics, 2, 125–134.CrossRefGoogle Scholar
  4. Cajka, T., & Fiehn, O. (2014). Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. TrAC Trends in Analytical Chemistry, 61, 192–206.CrossRefGoogle Scholar
  5. Council Directive 88/146/EEC Council Directive 88/146/EEC prohibiting the use livestock farming of certain substances having a hormonal action, pp. 16–18.Google Scholar
  6. Council Directive 96/22/EC concerning the prohibition on the use in stockfarming of certain substances having a hormonal or thyrostatic action and of beta-agonists, and repealing directives 81/602/EEC, 88/146/EEC and 88/299/EEC, pp. 3–9.Google Scholar
  7. Dervilly-Pinel, G., Chereau, S., Cesbron, N., Monteau, F., & Le Bizec, B. (2015). LC-HRMS based metabolomics screening model to detect various β-agonists treatments in bovines. Metabolomics, 11, 403–411.CrossRefGoogle Scholar
  8. Dervilly-Pinel, G., Courant, F., Chereau, S., Royer, A., Boyard-Kieken, F., Antignac, J., & Le Bizec, B. (2012). Metabolomics in food analysis: Application to the control of forbidden substances. Drug Testing and Analysis, 4, 59–69.CrossRefPubMedGoogle Scholar
  9. Dunshea, F. R. (1993). Effect of metabolism modifiers on lipid metabolism in the pig. Journal of Animal Science, 71, 1966–1977.CrossRefPubMedGoogle Scholar
  10. Dunshea, F. R., & King, R. H. (1994). Temporal response of plasma metabolites to ractopamine treatment in the growing pig. Australian Journal of Agricultural Research, 45, 1683–1692.CrossRefGoogle Scholar
  11. Dunshea, F. R., Leur, B. J., Tilbrook, A. J., & King, R. H. (1998). Ractopamine increases glucose turnover without affecting lipogenesis in the pig. Australian Journal of Agricultural Research, 49, 1147–1152.CrossRefGoogle Scholar
  12. Ekman, D. R., Teng, Q., Villeneuve, D. L., Kahl, M. D., Jensen, K. M., Durhan, E. J., Ankley, G. T., & Collette, T. W. (2009). Profiling lipid metabolites yields unique information on sex- and time-dependent responses of fathead minnows (Pimephales promelas) exposed to 17α-ethynylestradiol. Metabolomics, 5, 22–32.CrossRefGoogle Scholar
  13. Eriksson, L., Trygg, J., & Wold, S. (2008). CV-ANOVA for significance testing of PLS and OPLS® models. Journal of Chemometrics, 22, 594–600.CrossRefGoogle Scholar
  14. Fernando, H., Bhopale, K. K., Kondraganti, S., Kaphalia, B. S., & Ansari, S., G.A (2011). Lipidomic changes in rat liver after long-term exposure to ethanol. Toxicology and Applied Pharmacology, 255, 127–137.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Giraudeau, P. (2014). Quantitative 2D liquid-state NMR. Magnetic Resonance in Chemistry, 52, 259–272.CrossRefPubMedGoogle Scholar
  16. Giraudeau, P. (2017). Challenges and perspectives in quantitative NMR. Magnetic Resonance in Chemistry, 55, 61–69.CrossRefPubMedGoogle Scholar
  17. Guitton, Y., Dervilly-Pinel, G., Jandova, R., Stead, S., Takats, Z., & Le Bizec, B. (2017). Rapid evaporative ionisation mass spectrometry and chemometrics for high-throughput screening of growth promoters in meat producing animals. Food Additives & Contaminants. Scholar
  18. Hyotylainen, T., Ahonen, L., Poho, P., & Oresic, M. (2017). Lipidomics in biomedical research-practical considerations. Biochimica et Biophysica Acta, 1862, 800–803.CrossRefPubMedGoogle Scholar
  19. Jayalakshmi, K., Sonkar, K., Behari, A., Kapoor, V. K., & Sinha, N. (2011). Lipid profiling of cancerous and benign gallbladder tissues by 1H NMR spectroscopy. NMR in Biomedicine, 24, 335–342.PubMedGoogle Scholar
  20. Jézéquel, T., Deborde, C., Maucourt, M., Zhendre, V., Moing, A., & Giraudeau, P. (2015). Absolute quantification of metabolites in tomato fruit extracts by fast 2D NMR. Metabolomics, 11, 1231–1242.CrossRefGoogle Scholar
  21. Khalil, M. B., Hou, W., Zhou, H., Elisma, F., Swayne, L. A., Blanchard, A. P., Yao, Z., Bennett, S. A., & Figeys, D. (2010). Lipidomics era: Accomplishments and challenges. Mass Spectrometry Reviews, 29, 877–929.CrossRefGoogle Scholar
  22. Le Guennec, A., Dumez, J. N., Giraudeau, P., & Caldarelli, S. (2015). Resolution-enhanced 2D NMR of complex mixtures by non-uniform sampling. Magnetic Resonance in Chemistry, 53, 913–920.CrossRefPubMedGoogle Scholar
  23. Le Guennec, A., Giraudeau, P., & Caldarelli, S. (2014). Evaluation of fast 2D NMR for metabolomics. Analytical Chemistry, 86, 5946–5954.CrossRefPubMedGoogle Scholar
  24. Le Guennec, A., Tea, I., Antheaume, I., Martineau, E., Charrier, B., Pathan, M., Akoka, S., & Giraudeau, P. (2012). Fast determination of absolute metabolite concentrations by spatially encoded 2D NMR: Application to breast cancer cell extracts. Analytical Chemistry, 84, 10831–10837.CrossRefPubMedGoogle Scholar
  25. Lee, H.-C., & Yokomizo, T. (2018). Applications of mass spectrometry-based targeted and non-targeted lipidomics. Biochemical and Biophysical Research Communications. Scholar
  26. Li, J., Vosegaard, T., & Guo, Z. (2017). Applications of nuclear magnetic resonance in lipid analyses: An emerging powerful tool for lipidomics studies. Progress in Lipid Research, 68, 37–56.CrossRefPubMedGoogle Scholar
  27. Li, M., Yang, L., Bai, Y., & Liu, H. (2014). Analytical methods in lipidomics and their applications. Analytical Chemistry, 86, 161–175.CrossRefPubMedGoogle Scholar
  28. Liquet, B., Le Cao, K. A., Hocini, H., & Thiebaut, R. (2012). A novel approach for biomarker selection and the integration of repeated measures experiments from two assays. BMC Bioinformatics, 13, 325.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Malz, F. (2008). Quantitative NMR in the solution state NMR A2. In U. Holzgrabe, I. Wawer, B. Diehl (Eds.), NMR spectroscopy in pharmaceutical analysis (pp. 43–62). Amsterdam: Elsevier.CrossRefGoogle Scholar
  30. Marchand, J., Martineau, E., Guitton, Y., Dervilly-Pinel, G., & Giraudeau, P. (2017). Multidimensional NMR approaches towards highly resolved, sensitive and high-throughput quantitative metabolomics. Current Opinion in Biotechnology, 43, 49–55.CrossRefPubMedGoogle Scholar
  31. Marshall, D. D., Lei, S., Worley, B., Huang, Y., Garcia-Garcia, A., Franco, R., Dodds, E. D., & Powers, R. (2015). Combining DI-ESI–MS and NMR datasets for metabolic profiling. Metabolomics, 11, 391–402.CrossRefPubMedGoogle Scholar
  32. Martineau, E., Akoka, S., Boisseau, R., Delanoue, B., & Giraudeau, P. (2013). Fast quantitative 1H–13C two-dimensional NMR with very high precision. Analytical Chemistry, 85, 4777–4783.CrossRefPubMedGoogle Scholar
  33. Mavromoustakos, T., Zervou, M., Theodoropoulou, E., Panagiotopoulos, D., Bonas, G., Day, M., & Helmis, A. (1997). 13C NMR analysis of the triacylglycerol composition of Greek virgin olive oils. Magnetic Resonance in Chemistry, 35, S3-S7.CrossRefGoogle Scholar
  34. Merchak, N., Silvestre, V., Loquet, D., Rizk, T., Akoka, S., & Bejjani, J. (2017). A strategy for simultaneous determination of fatty acid composition, fatty acid position, and position-specific isotope contents in triacylglycerol matrices by (13)C-NMR. Analytical and Bioanalytical Chemistry, 409, 307–315.CrossRefPubMedGoogle Scholar
  35. Nzoughet, J. K., Gallart-Ayala, H., Biancotto, G., Hennig, K., Dervilly-Pinel, G., & Le Bizec, B. (2015). Hydrophilic interaction (HILIC) and reverse phase liquid chromatography (RPLC)–high resolution MS for characterizing lipids profile disruption in serum of anabolic implanted bovines. Metabolomics, 11, 1884–1895.CrossRefGoogle Scholar
  36. Pathan, M., Akoka, S., Tea, I., Charrier, B., & Giraudeau, P. (2011). “Multi-scan single shot” quantitative 2D NMR: A valuable alternative to fast conventional quantitative 2D NMR. Analyst, 136, 3157–3163.CrossRefPubMedGoogle Scholar
  37. Pellegrino, R. M., Di Veroli, A., Valeri, A., Goracci, L., & Cruciani, G. (2014). LC/MS lipid profiling from human serum: A new method for global lipid extraction. Analytical and Bioanalytical Chemistry, 406, 7937–7948.CrossRefPubMedGoogle Scholar
  38. Peng, T., Royer, A.-L., Guitton, Y., Le Bizec, B., & Dervilly-Pinel, G. (2017). Serum-based metabolomics characterization of pigs treated with ractopamine. Metabolomics, 13, 77.CrossRefGoogle Scholar
  39. Pinel, G., Weigel, S., Antignac, J. P., Mooney, M. H., Elliott, C., Nielen, M. W. F., & Le Bizec, B. (2010). Targeted and untargeted profiling of biological fluids to screen for anabolic practices in cattle. TrAC Trends in Analytical Chemistry, 29, 1269–1280.CrossRefGoogle Scholar
  40. Puig-Castellvi, F., Perez, Y., Pina, B., Tauler, R., & Alfonso, I. (2018). Compression of multidimensional NMR spectra allows a faster and more accurate analysis of complex samples. Chemical Communications, 54, 3090–3093.CrossRefPubMedGoogle Scholar
  41. Reiter, S. S., Halsey, C. H., Stronach, B. M., Bartosh, J. L., Owsley, W. F., & Bergen, W. G. (2007). Lipid metabolism related gene-expression profiling in liver, skeletal muscle and adipose tissue in crossbred Duroc and Pietrain Pigs. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2, 200–206.Google Scholar
  42. Ricks, C. A., Dalrymple, R. H., Baker, P. K., & Ingle, D. L. (1984). Use of a β-agonist to alter fat and muscle deposition in steers1, 2. Journal of Animal Science, 59, 1247–1255.CrossRefGoogle Scholar
  43. Rouger, L., Gouilleux, B., & Giraudeau, P. (2017). Fast n-dimensional data acquisition methods A2. In J.C. Lindon, G. E. Tranter & D. W. Koppenaal (Eds.), Encyclopedia of spectroscopy and spectrometry (third edition) (pp. 588–596). Oxford: Academic Press.CrossRefGoogle Scholar
  44. Soares da Silva Ferreira, M., Garbossa, P., Oberlender, C. A., Pereira, G., Zangeronimo, L., Vicente, M., de Sousa, R., & Cantarelli, V. (2013). Effect of ractopamine on lipid metabolism in vivo: A systematic review. Brazilian Archives of Biology and Technology, 56, 35–43.CrossRefGoogle Scholar
  45. Spener, F., Lagarde, M., Géloên, A., & Record, M. (2003). Editorial: What is lipidomics? European Journal of Lipid Science and Technology, 105, 481–482.CrossRefGoogle Scholar
  46. Veenstra, T. D. (2012). Metabolomics: The final frontier? Genome Medicine, 4, 40.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Vlahov, G. (1997). Quantitative 13C NMR method using the DEPT pulse sequence for the detection of olive oil adulteration with soybean oil. Magnetic Resonance in Chemistry, 35, S8–S12.CrossRefGoogle Scholar
  48. Wenk, M. R. (2005). The emerging field of lipidomics. Nature Reviews Drug Discovery, 4, 594–610.CrossRefPubMedGoogle Scholar
  49. Wenk, M. R. (2010). Lipidomics: New tools and applications. Cell, 143, 888–895.CrossRefPubMedGoogle Scholar
  50. Westerhuis, J. A., van Velzen, E. J., Hoefsloot, H. C., & Smilde, A. K. (2010). Multivariate paired data analysis: Multilevel PLSDA versus OPLSDA. Metabolomics, 6, 119–128.CrossRefPubMedGoogle Scholar
  51. Yang, K., & Han, X. (2016). Lipidomics: Techniques, applications, and outcomes related to biomedical sciences. Trends in Biochemical Sciences, 41, 954–969.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zhao, Y. Y., Wu, S. P., Liu, S., Zhang, Y., & Lin, R. C. (2014). Ultra-performance liquid chromatography-mass spectrometry as a sensitive and powerful technology in lipidomic applications. Chemico-Biological Interactions, 220, 181–192.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jérémy Marchand
    • 1
    • 2
  • Estelle Martineau
    • 1
    • 3
  • Yann Guitton
    • 2
  • Bruno Le Bizec
    • 2
  • Gaud Dervilly-Pinel
    • 2
  • Patrick Giraudeau
    • 1
    • 4
  1. 1.EBSI Team, Chimie et Interdisciplinarité : Synthèse, Analyse, Modélisation (CEISAM)Université de Nantes, CNRS, UMR 6230NantesFrance
  2. 2.Laberca, Oniris, INRA, Université Bretagne LoireNantesFrance
  3. 3.SpectroMaitrise, CAPACITES SASNantesFrance
  4. 4.Institut Universitaire de FranceParis Cedex 05France

Personalised recommendations